容景超, 毛晓明, 王炫, 林权辉, 杨炳鑫. 基于CBAM-CNN多任务模型的暂态电压稳定定量评估方法[J]. 高电压技术, 2025, 51(1): 281-289. DOI: 10.13336/j.1003-6520.hve.20231681
引用本文: 容景超, 毛晓明, 王炫, 林权辉, 杨炳鑫. 基于CBAM-CNN多任务模型的暂态电压稳定定量评估方法[J]. 高电压技术, 2025, 51(1): 281-289. DOI: 10.13336/j.1003-6520.hve.20231681
RONG Jingchao, MAO Xiaoming, WANG Xuan, LIN Quanhui, YANG Bingxin. Quantitative Evaluation Method for Transient Voltage Stability Based on CBAM-CNN Multi-task Model[J]. High Voltage Engineering, 2025, 51(1): 281-289. DOI: 10.13336/j.1003-6520.hve.20231681
Citation: RONG Jingchao, MAO Xiaoming, WANG Xuan, LIN Quanhui, YANG Bingxin. Quantitative Evaluation Method for Transient Voltage Stability Based on CBAM-CNN Multi-task Model[J]. High Voltage Engineering, 2025, 51(1): 281-289. DOI: 10.13336/j.1003-6520.hve.20231681

基于CBAM-CNN多任务模型的暂态电压稳定定量评估方法

Quantitative Evaluation Method for Transient Voltage Stability Based on CBAM-CNN Multi-task Model

  • 摘要: 为提升基于数据的暂态电压稳定评估的时效性并实现定量评估,提出一种基于卷积块注意力模块-卷积神经网络(convolutional block attention module-based convolutional neural network,CBAM-CNN)的暂态电压稳定评估模型。该模型以电网潮流数据、故障位置信息和节点电压突变信息为输入,引入混合注意力机制和多任务学习框架,输出电网各节点的暂态电压稳定水平和稳定标签。在经典IEEE 39节点系统中的研究表明,所提出的模型对潮流和故障位置变化具有充分的适应性;与其他几种常用的深度学习模型相比,所推荐的模型具有更强的信息表征能力和泛化能力,有望应用于电网预防控制策略的制订中。

     

    Abstract: To improve the timeliness of data-based transient voltage stability assessment and to achieve quantitative evaluation, we proposed a transient voltage stability evaluation model based on convolutional block attention module-based convolutional neural network (CBAM-CNN). In the model, the power-flow, fault location, and bus voltage jump information are used as inputs, and hybrid attention mechanism and multi-task learning framework are introduced to output the transient voltage stability level and stability labels of each node in power grid. Studies in the classic IEEE 39-bus system show that the proposed model has sufficient adaptability to changes in power-flow and fault location; compared to several other popular deep-learning models, the recommended model has stronger information representation and generalization capabilities, and is expected to be applied in power system preventive controls.

     

/

返回文章
返回