胡晨龙, 裴少通, 刘云鹏, 杨文杰, 杨瑞, 张行远, 刘海峰. 基于LEE-YOLOv7的输电线路边缘端实时缺陷检测方法[J]. 高电压技术, 2024, 50(11): 5047-5057. DOI: 10.13336/j.1003-6520.hve.20230945
引用本文: 胡晨龙, 裴少通, 刘云鹏, 杨文杰, 杨瑞, 张行远, 刘海峰. 基于LEE-YOLOv7的输电线路边缘端实时缺陷检测方法[J]. 高电压技术, 2024, 50(11): 5047-5057. DOI: 10.13336/j.1003-6520.hve.20230945
HU Chenlong, PEI Shaotong, LIU Yunpeng, YANG Wenjie, YANG Rui, ZHANG Hangyuan, LIU Haifeng. Real-time Edge End Defect Detection Method for Transmission Line Based on LEE-YOLOv7[J]. High Voltage Engineering, 2024, 50(11): 5047-5057. DOI: 10.13336/j.1003-6520.hve.20230945
Citation: HU Chenlong, PEI Shaotong, LIU Yunpeng, YANG Wenjie, YANG Rui, ZHANG Hangyuan, LIU Haifeng. Real-time Edge End Defect Detection Method for Transmission Line Based on LEE-YOLOv7[J]. High Voltage Engineering, 2024, 50(11): 5047-5057. DOI: 10.13336/j.1003-6520.hve.20230945

基于LEE-YOLOv7的输电线路边缘端实时缺陷检测方法

Real-time Edge End Defect Detection Method for Transmission Line Based on LEE-YOLOv7

  • 摘要: 边缘计算设备已广泛应用于无人机输电线路巡检中,但边缘端设备较低的功率及算力限制了其检测速度与精度,针对以上问题,该文对YOLOv7目标检测算法进行改进,提出一种基于LEE-YOLOv7的输电线路边缘端缺陷诊断方法。首先,采用Mosaic-9数据增强方法改进训练阶段的输入端,提高网络的泛化能力;而后引入LCnet网络改造主干网络部分,减少冗余参数,轻量化网络;然后,采用Meta-ACON激活函数及Wise-IoU损失函数优化网络;最后在推理过程中使用Deepstream技术调用TensorRT模块实现模型重构、优化及加速。经实验验证,LEE-YOLOv7对10种常见输电线路多尺寸缺陷的识别平均准确率达到92.3%,相比原版YOLOv7算法提高了2.8%,且检测速度提升了38帧/s,达到53帧/s。采用Deepstream调用TensorRT模块进行推理过程的优化加速后,在Nvidia Jetson Xavier NX边缘端模块上,实现了91.2%的平均准确度及79帧/s的检测速度,满足了边缘端准确实时的输电线路缺陷检测要求。

     

    Abstract: Edge computing devices have been widely used in unmanned aerial vehicle (UAV) power transmission line inspections. However, the limited power and computational capabilities of edge devices hinder the detection speed and accuracy. To address these challenges, we improve the YOLOv7 target detection algorithm and propose an edge-end defect detection method for transmission lines based on the LEE-YOLOv7. Firstly, the Mosaic-9 data enhancement method is used to improve the inputs in the training phase to improve the generalization ability of the network. Then, the LCnet network is introduced to transform the backbone network part, to reduce the redundant parameters and to lighten the network. Subsequently, the Meta-ACON activation function and Wise-IoU loss function are applied to optimize the network. Finally, during the inference process, the Deepstream technology is utilized to invoke the TensorRT module, achieving model reconstruction, optimization, and acceleration. The experimental results demonstrate that the LEE-YOLOv7 achieves an average accuracy of 92.3% in identifying ten common types of power transmission line defects with varying sizes. Compared to the original YOLOv7 algorithm, the proposed approach improves accuracy by 2.8% and increases detection speed by 38 frames per second, reaching 53 frames per second. After optimizing the inference process using Deepstream and TensorRT on the Nvidia Jetson Xavier NX edge module, the approach achieves an average accuracy of 91.2% and 79 frames per second for defect detection, satisfying the requirements of accurate real-time transmission line defect detection at the edge end.

     

/

返回文章
返回