于越, 丁磊, 金朝阳. 考虑小样本不平衡的主动配电网预测辅助鲁棒状态估计[J]. 高电压技术, 2024, 50(10): 4550-4560. DOI: 10.13336/j.1003-6520.hve.20230785
引用本文: 于越, 丁磊, 金朝阳. 考虑小样本不平衡的主动配电网预测辅助鲁棒状态估计[J]. 高电压技术, 2024, 50(10): 4550-4560. DOI: 10.13336/j.1003-6520.hve.20230785
YU Yue, DING Lei, JIN Zhaoyang. Robust Forecasting-aided State Estimation Method of Active Distribution Network Considering Small Sample Imbalance[J]. High Voltage Engineering, 2024, 50(10): 4550-4560. DOI: 10.13336/j.1003-6520.hve.20230785
Citation: YU Yue, DING Lei, JIN Zhaoyang. Robust Forecasting-aided State Estimation Method of Active Distribution Network Considering Small Sample Imbalance[J]. High Voltage Engineering, 2024, 50(10): 4550-4560. DOI: 10.13336/j.1003-6520.hve.20230785

考虑小样本不平衡的主动配电网预测辅助鲁棒状态估计

Robust Forecasting-aided State Estimation Method of Active Distribution Network Considering Small Sample Imbalance

  • 摘要: 为了解决主动配电网状态估计中数据集的小样本不平衡问题,提出了基于改进少数过采样技术(synthetic minority oversampling technique, SMOTE)的Prophet和粒子滤波(particle filter, PF)的主动配电网预测辅助鲁棒状态估计方法(robust forecasting-aided state estimation, FASE),对主动配电网进行状态估计。首先,针对主动配电网小样本不平衡问题,基于主动配电网的数据特征构建哈希函数,提出利用哈希函数对Borderline-SMOTE+Tomek-Links算法进行优化的方法,处理主动配电网数据集。然后,针对主动配电网海量数据量、分布式能源的出力随机变化等特点,将Prophet预测模型用于主动配电网状态估计,提出了一种基于Prophet-PF的鲁棒FASE方法,达到快速、准确地估计主动配电网状态的目的。最后以IEEE 118节点标准配电网和DTU 7k 47实际配电系统为测试系统进行仿真,结果表明所提方法具有较高的精度和鲁棒性,为主动配电网状态估计提供相应参考。

     

    Abstract: To solve the problem of small sample imbalance in state estimation of active distribution networks (ADNs), this paper proposes a robust forecasting-aided state estimation (FASE) method based on the improved synthetic minority oversampling technique (SMOTE) and particle filter (PF) of Prophet. The method enables state estimation of ADNs. Firstly, to handle the small-sample imbalance problem, a hash function is constructed based on the data features of the ADN and an optimization approach is proposed using the hash function for the Borderline-SMOTE+Tomek-Links algorithm. Secondly, considering the large amount of data and the stochastic output of distributed energy resources in ADNs, the Prophet prediction model is used for state estimation of ADNs, and a robust FASE method based on Prophet-PF is proposed for fast and accurate estimation of ADNs states. Finally, numerical simulations are conducted on standard IEEE 118-bus distribution network and a DTU 7k 47 distribution system to evaluate the proposed method. The results demonstrate that the proposed method has high accuracy and robustness, providing useful references for state estimation in ADNs.

     

/

返回文章
返回