王玉伟, 余俊龙, 彭平, 谢锦莹, 易俊飞, 陶梓铭. 基于多模型融合的变压器故障在线检测方法[J]. 高电压技术, 2023, 49(8): 3415-3424. DOI: 10.13336/j.1003-6520.hve.20230646
引用本文: 王玉伟, 余俊龙, 彭平, 谢锦莹, 易俊飞, 陶梓铭. 基于多模型融合的变压器故障在线检测方法[J]. 高电压技术, 2023, 49(8): 3415-3424. DOI: 10.13336/j.1003-6520.hve.20230646
WANG Yuwei, YU Junlong, PENG Ping, XIE Jinying, YI Junfei, TAO Ziming. Online Detection Method for Transformer Faults Based on Multi-model Fusion[J]. High Voltage Engineering, 2023, 49(8): 3415-3424. DOI: 10.13336/j.1003-6520.hve.20230646
Citation: WANG Yuwei, YU Junlong, PENG Ping, XIE Jinying, YI Junfei, TAO Ziming. Online Detection Method for Transformer Faults Based on Multi-model Fusion[J]. High Voltage Engineering, 2023, 49(8): 3415-3424. DOI: 10.13336/j.1003-6520.hve.20230646

基于多模型融合的变压器故障在线检测方法

Online Detection Method for Transformer Faults Based on Multi-model Fusion

  • 摘要: 变压器是电力系统中的关键设备,实现对变压器故障的准确在线检测对保证电力系统的安全稳定运行具有重要意义。针对变压器声纹图像在线检测方法存在部件之间遮挡严重、检测目标尺寸较小、背景复杂等问题,提出了一种基于多模型融合的变压器故障在线检测方法,模型由两部分组成,即掩码区域的卷积神经网络(mask region-based convolutional neural network,Mask R-CNN)以及改进Retina-Net网络。利用Mask R-CNN网络分割出声纹图像中的变压器主体部分,再结合改进Retina-Net网络对分割出的变压器主体进行目标检测。实验结果表明:该方法能够有效分割出变压器的主体部分,并可以对变压器的故障部位进行准确识别,对变压器故障部位的在线检测精度达到96.1%。该文提出的多模型融合算法,充分利用深度学习的优势,实现了高精度、高效率的变压器故障在线检测,在电网设备在线检测和故障智能识别领域有显著应用价值。

     

    Abstract: Transformers are critical devices in power systems, and accurate online detection of transformer faults is of vital importance for ensuring the safe operation of power systems. In response to issues such as severe occlusion between components, small target sizes, and complex backgrounds in transformer acoustic image-based online detection methods, this paper proposes a multi-model fusion-based online detection method for transformer faults. The model consists of two parts: the Mask R-CNN (mask region-based convolutional neural network) and the improved Retina-Net network. The Mask R-CNN network is used to segment the main body of the transformer in the acoustic image, and the segmented transformer main body is further subjected to target detection using the improved Retina-Net network. The experimental results demonstrate that this method can be adopted to effectively segment the transformer's main body and accurately identifythe faulty areas, achieving a detection accuracy of 96.1% for transformer fault locations. The paper proposes a multi-model fusion algorithm to take full advantage of deep learning, significantly improving the accuracy and efficiency of online detection of transformer faults, and exhibiting high application value in the field of online detection and intelligent recognition of power grid equipment faults.

     

/

返回文章
返回