牛焕娜, 窦伟, 李春毅, 钱立, 井天军, 陈卫东. 基于模糊神经网络的微电网荷储协调智能控制方法[J]. 高电压技术, 2024, 50(7): 3019-3028. DOI: 10.13336/j.1003-6520.hve.20230487
引用本文: 牛焕娜, 窦伟, 李春毅, 钱立, 井天军, 陈卫东. 基于模糊神经网络的微电网荷储协调智能控制方法[J]. 高电压技术, 2024, 50(7): 3019-3028. DOI: 10.13336/j.1003-6520.hve.20230487
NIU Huanna, DOU Wei, LI Chunyi, QIAN Li, JING Tianjun, CHEN Weidong. Intelligent Control Method of Load and Storage Coordination in Microgrid Based on Fuzzy Neural Network[J]. High Voltage Engineering, 2024, 50(7): 3019-3028. DOI: 10.13336/j.1003-6520.hve.20230487
Citation: NIU Huanna, DOU Wei, LI Chunyi, QIAN Li, JING Tianjun, CHEN Weidong. Intelligent Control Method of Load and Storage Coordination in Microgrid Based on Fuzzy Neural Network[J]. High Voltage Engineering, 2024, 50(7): 3019-3028. DOI: 10.13336/j.1003-6520.hve.20230487

基于模糊神经网络的微电网荷储协调智能控制方法

Intelligent Control Method of Load and Storage Coordination in Microgrid Based on Fuzzy Neural Network

  • 摘要: 针对传统比例-积分-微分(proportional integral derivative, PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控制输入及输出变量,以平抑净负荷波动及减少储能充放电频次为目的,将微电网控制经验总结成模糊规则表,采用神经网络深度学习算法修正模糊控制模型的隶属度函数中心、宽度和输出权重来提高模型的自适应能力,从而制定了可调控负荷和储能的功率控制系数;进而针对模糊神经网络控制输出的负荷调控需求量在各可调控负荷间分配的问题,提出了基于灵活性供给指标排序的负荷调控优先级选择方法,最终完成了微电网系统储能单元和可调控负荷控制策略的制定。某典型微电网系统算例仿真结果表明,所提方法制定的各可调控负荷与储能控制策略能在避免储能频繁和过度充放电的同时,在并网状态下有效减弱并网功率对上级电网造成的随机扰动,在孤岛状态下能够有效平抑系统功率波动,提升系统运行稳定性。

     

    Abstract: It is difficult for traditional proportional integral derivative(PID) control and model theory control methods to deal with the complex and changeable operation scenarios of microgrid under the background of new power system, therefore, a fuzzy neural network based intelligent control method for load storage coordination of microgrid is proposed. Firstly, the input and output variables of fuzzy control of the microgrid are determined. The control experience of the microgrid is summarized into a fuzzy rule table for the purpose of stabilizing the fluctuation of net load and reducing the frequency of charging and discharging of energy storage. The membership function center, width and output weight of the fuzzy control model are modified by using the deep learning algorithm of neural network, so as to improve the adaptive ability of the model. Thus, the power control factors of adjustable load and energy storage are formulated. Then, to solve the problem that the load regulation demand output of fuzzy neural network control is distributed among various adjustable loads, a load control priority selection method based on the flexible supply index ranking is proposed. Finally, the energy storage unit and the control strategy of adjustable loads are formulated. The simulation results of a typical microgrid system demonstrate that the adjustable load and energy storage control strategies, developed by the proposed method, can not only prevent the frequent and excessive charge or discharge of energy storage, but also effectively reduce the random disturbance of grid-connected power to the superior grid in the grid-connected state, and effectively stabilize the power fluctuations of the system in the isolated island state, thus improving the operational stability of the system.

     

/

返回文章
返回