杨茂, 王达, 王小海, 范馥麟, 高博, 王勃. 基于数据物理混合驱动的超短期风电功率预测模型[J]. 高电压技术, 2024, 50(11): 5132-5141. DOI: 10.13336/j.1003-6520.hve.20230401
引用本文: 杨茂, 王达, 王小海, 范馥麟, 高博, 王勃. 基于数据物理混合驱动的超短期风电功率预测模型[J]. 高电压技术, 2024, 50(11): 5132-5141. DOI: 10.13336/j.1003-6520.hve.20230401
YANG Mao, WANG Da, WANG Xiaohai, FAN Fulin, GAO Bo, WANG Bo. Ultra-short Term Wind Power Prediction Method Based on Data Physics Hybrid Driven Model[J]. High Voltage Engineering, 2024, 50(11): 5132-5141. DOI: 10.13336/j.1003-6520.hve.20230401
Citation: YANG Mao, WANG Da, WANG Xiaohai, FAN Fulin, GAO Bo, WANG Bo. Ultra-short Term Wind Power Prediction Method Based on Data Physics Hybrid Driven Model[J]. High Voltage Engineering, 2024, 50(11): 5132-5141. DOI: 10.13336/j.1003-6520.hve.20230401

基于数据物理混合驱动的超短期风电功率预测模型

Ultra-short Term Wind Power Prediction Method Based on Data Physics Hybrid Driven Model

  • 摘要: 为提升超短期风电功率预测精度,提出一种数据-物理混合驱动的超短期风电功率预测方法。首先,构建一种融合双向门控循环单元的残差网络结构,将其在测试集的预测结果作为预测模板。然后,根据风速-风电转换特性,基于多项式-线性回归模型拟合风电场风速-功率曲线,在风速高波动时点,以物理机理透明的风速-功率曲线进行预测。最后,根据风速波动阈值建立不同模型之间的动态切换机制,按切换的时点修改模板预测值,对于修正风速小于切入风速的时点,将预测值置零。在吉林省某装机容量为400.5 MW的风电场提供的数据上进行仿真实验得到,测试集第16步预测的平均归一化均方根误差为0.158 9,全部切换中有利切换占比达到90.86%,验证了提出的超短期风电功率预测模型的有效性和适用性。

     

    Abstract: To improve the accuracy of ultrashort-term wind power prediction, a data-physical hybrid-driven ultrashort-term wind power prediction method is proposed. First, the ultrashort-term WPP model with bidirectional recurrent residual net-work is constructed, and the prediction results in the test set are used as the prediction template. Then, a polynomial-linear regression model is utilized to fit the wind speed-power curve of the wind farm, and the wind-power curve (WPC) is used to predict at the high fluctuation points. Finally, a dynamic switching mechanism between different models is established according to the wind speed fluctuation threshold, the template prediction value is modified according to the switching time point, and the prediction value is set to zero for the samples that the corrected wind speed is less than the cut-in wind speed. Experimental validation is carried out with data provided by a wind farm with an installed capacity of 400.5 MW in Jilin province of China, the average normalized root mean square error predicted in step 16 of the test set is 0.158 9, and the favorable switchover accounts for 90.86% of all the switches, which verify the validity and applicability of the proposed ultra-short- term wind power prediction model.

     

/

返回文章
返回