高正男, 胡姝博, 金田, 孙辉, 陈晓东, 王钟辉. 考虑传输线动态增容风险的电力系统日前调度模型[J]. 高电压技术, 2023, 49(8): 3215-3225. DOI: 10.13336/j.1003-6520.hve.20230228
引用本文: 高正男, 胡姝博, 金田, 孙辉, 陈晓东, 王钟辉. 考虑传输线动态增容风险的电力系统日前调度模型[J]. 高电压技术, 2023, 49(8): 3215-3225. DOI: 10.13336/j.1003-6520.hve.20230228
GAO Zhengnan, HU Shubo, JIN Tian, SUN Hui, CHEN Xiaodong, WANG Zhonghui. Day-ahead Power System Scheduling Model Considering Transmission Line Dynamic Capacity Expansion Risk[J]. High Voltage Engineering, 2023, 49(8): 3215-3225. DOI: 10.13336/j.1003-6520.hve.20230228
Citation: GAO Zhengnan, HU Shubo, JIN Tian, SUN Hui, CHEN Xiaodong, WANG Zhonghui. Day-ahead Power System Scheduling Model Considering Transmission Line Dynamic Capacity Expansion Risk[J]. High Voltage Engineering, 2023, 49(8): 3215-3225. DOI: 10.13336/j.1003-6520.hve.20230228

考虑传输线动态增容风险的电力系统日前调度模型

Day-ahead Power System Scheduling Model Considering Transmission Line Dynamic Capacity Expansion Risk

  • 摘要: 为避免输电网传输通道不合理增容所引起的潮流热越限风险,在电力安全传输的保证下,合理提升新能源电力系统中各类资源的跨时空消纳能力,提出一种考虑传输线动态增容风险的电力系统日前调度模型。首先,建立了具有时变结构的ForecastNet输电线动态热容量极限(dynamic thermal rating, DTR)预测模型,该模型可以动态跟踪环境因素影响程度并修正预测网络权值,提高预测精度;其次,基于DTR日前预测结果确定输电线动态增容裕度,引入增容风险成本及风险偏好系数,构建面向电力市场报价机制的日前调度模型;最后,利用辽宁省实网数据在IEEE-39节点系统上对所提模型进行仿真。仿真结果验证了预测模型的准确性及调度模型的有效性,同时表明该调度模型可以充分利用输电网冗余传输空间,大幅提升可再生能源的消纳水平,保证电力市场环境下日前调度策略的安全性和经济性。

     

    Abstract: In order to avoid the risk of power flow thermal over-limit caused by unreasonable capacity expansion of transmission lines, a day-ahead dispatching model of power system considering transmission line dynamic capacity expansion risk is proposed. The model aims to reasonably improve the consumption capacity of various resources under the guarantee of safe power transmission. Firstly, the dynamic thermal rating (DTR) prediction model of transmission lines is established based on the ForecastNet neural network with time-variant structure. The prediction model can dynamically track the influence degrees of environmental factors and correct the prediction network weights to improve the prediction accuracy. Secondly, based on the DTR day-ahead forecasting results, the dynamic capacity increase margins of transmission lines are determined, and the day-ahead scheduling model for electricity market bidding mechanism is constructed by introducing the capacity increase risk cost and the risk preference coefficient. Finally, the proposed model is simulated on the IEEE-39 nodes system by using the real network data of Liaoning Province. The simulation results verify the accuracy of the prediction model and the effectiveness of the scheduling model. At the same time, the simulation results show that the scheduling model can make full use of the redundant transmission space of the transmission network, greatly enhance the consumption level of renewable energy, and ensure the security and economy of the day-ahead scheduling strategy in the electricity market environment.

     

/

返回文章
返回