于跃强, 陈宇, 赵仲勇, 宫小宇, 唐超. 基于CWT和CNN-BiLSTM的散绕同步电机定子绕组短路故障检测方法[J]. 高电压技术, 2024, 50(5): 2166-2176. DOI: 10.13336/j.1003-6520.hve.20222104
引用本文: 于跃强, 陈宇, 赵仲勇, 宫小宇, 唐超. 基于CWT和CNN-BiLSTM的散绕同步电机定子绕组短路故障检测方法[J]. 高电压技术, 2024, 50(5): 2166-2176. DOI: 10.13336/j.1003-6520.hve.20222104
YU Yueqiang, CHEN Yu, ZHAO Zhongyong, GONG Xiaoyu, TANG Chao. Detection Method of Stator Winding Short Circuit Fault of Synchronous Motor Based on CWT and CNN-BiLSTM[J]. High Voltage Engineering, 2024, 50(5): 2166-2176. DOI: 10.13336/j.1003-6520.hve.20222104
Citation: YU Yueqiang, CHEN Yu, ZHAO Zhongyong, GONG Xiaoyu, TANG Chao. Detection Method of Stator Winding Short Circuit Fault of Synchronous Motor Based on CWT and CNN-BiLSTM[J]. High Voltage Engineering, 2024, 50(5): 2166-2176. DOI: 10.13336/j.1003-6520.hve.20222104

基于CWT和CNN-BiLSTM的散绕同步电机定子绕组短路故障检测方法

Detection Method of Stator Winding Short Circuit Fault of Synchronous Motor Based on CWT and CNN-BiLSTM

  • 摘要: 近年来,基于脉冲频率响应法(impulse frequency response analysis,IFRA)的神经网络模型已被证实能够有效检测定子绕组故障。然而,这些模型普遍具有鲁棒性不强、抗噪能力差等特点,究其原因是大多数的模型采用简单的神经网络架构且常规的IFRA普遍采用快速傅里叶变换(fast Fourier transform,FFT)对暂态信号进行时频变换,而FFT并不适合处理暂态突变的非平稳信号。文中以散绕结构的同步电机定子绕组为检测对象,采用连续小波变换(continual wavelet transform,CWT)代替FFT处理IFRA的暂态信号,并基于一维卷积神经网络(convolutional neural networks,CNN)和双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)构建CNN-BiLSTM模型对采用CWT变换之后的信号进行故障检测。实验结果表明:采用CWT处理后的频域序列作为该模型的输入,相较于其它结构单一的模型,其平均准确率最优且高达99.01%。噪声对比实验表明:采用CWT变换后的数据能使故障诊断模型的鲁棒性及泛化性更强。

     

    Abstract: In recent years, neural network models based on impulse frequency response analysis (IFRA) have been proven effective in detecting stator winding faults. However, these models are generally characterized by weak robustness and poor noise resistance. The reason is that most of the models adopt simple neural network architecture and conventional IFRA generally use fast Fourier transform (FFT) to perform time-frequency transformation on transient signals, while FFT is not suitable for processing transient abrupt non-stationary signals. In this paper, the stator winding of a loose wound synchronous machine is taken as the detection object and continuous wavelet transform (CWT) instead of FFT is used to process the transient signal of IFRA, and based on one-dimensional convolutional neural networks (CNN) and bi-directional long short term memory (BiLSTM) networks, a CNN-BiLSTM model is constructed to detect the fault of the data transformed by CWT. The experimental results show that, compared with other models with the transformed single, the CNN-BiLSTM model with CWT processed frequency domain sequence as input has the best average accuracy of 99.01%. The noise contrast experiment shows that data transformed by CWT can enable the fault diagnosis model to be more robust and generalized.

     

/

返回文章
返回