李梦遥, 王歆昀, 赵昱雷, 刘峰, 方志. 纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气DBD均匀性的影响[J]. 高电压技术, 2024, 50(2): 852-860. DOI: 10.13336/j.1003-6520.hve.20222062
引用本文: 李梦遥, 王歆昀, 赵昱雷, 刘峰, 方志. 纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气DBD均匀性的影响[J]. 高电压技术, 2024, 50(2): 852-860. DOI: 10.13336/j.1003-6520.hve.20222062
LI Mengyao, WANG Xinyun, ZHAO Yulei, LIU Feng, FANG Zhi. Influence of Nanosecond Pulse Voltage Amplitude and Rising/Falling Edge Time on the Uniformity of Atmospheric Pressure N2 DBD[J]. High Voltage Engineering, 2024, 50(2): 852-860. DOI: 10.13336/j.1003-6520.hve.20222062
Citation: LI Mengyao, WANG Xinyun, ZHAO Yulei, LIU Feng, FANG Zhi. Influence of Nanosecond Pulse Voltage Amplitude and Rising/Falling Edge Time on the Uniformity of Atmospheric Pressure N2 DBD[J]. High Voltage Engineering, 2024, 50(2): 852-860. DOI: 10.13336/j.1003-6520.hve.20222062

纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气DBD均匀性的影响

Influence of Nanosecond Pulse Voltage Amplitude and Rising/Falling Edge Time on the Uniformity of Atmospheric Pressure N2 DBD

  • 摘要: 大气压氮气介质阻挡放电在材料改性、环境保护、消毒灭菌、臭氧合成以及流动控制等领域具有广阔的应用前景,放电均匀性是影响其应用效果的关键。通过电学及光学诊断方法研究了电压幅值、上升/下降沿时间、及重复频率对纳秒脉冲氮气DBD均匀性和放电过程的影响。利用灰度分析方法和等效电路模型定量分析放电图像和电压电流波形,得到放电均匀性和电学微观参数。结果表明:增加电压幅值或重复频率,氮气DBD均匀性呈现不均匀到均匀再到不均匀的变化规律,并且频率较低时的氮气DBD需要更大的电压幅值以实现均匀放电;增大脉冲上升或下降沿时间会导致放电均匀性显著下降,且相比于下降沿,上升沿对放电均匀性影响更大。测量发射光谱对比了不同纳秒脉冲参数下化学活性物种含量的变化,发现增大电压幅值、重复频率均会导致N2各激发态粒子谱线强度增强;脉冲上升沿或下降沿时间的增加使主要粒子谱线强度下降。此研究揭示了纳秒脉冲参数对N2 DBD过程影响机制,有利于制备均匀、稳定且高活性的大气压等离子体源。

     

    Abstract: Atmospheric pressure N2 dielectric barrier discharge(DBD) has broad application prospects in the fields of material modification, environmental protection, disinfection and sterilization, ozone synthesis, and flow control, and discharge uniformity is very important for its application. In this paper, the effects of voltage amplitude, pulse rising/falling edge times, and repetition frequency on the uniformity and discharge process of nanosecond pulse N2 DBD are studied by electrical and optical diagnoses. The discharge images and voltage-current waveforms are quantitatively analyzed by the Gray Value Standard Deviation method and equivalent electrical model to obtain the discharge uniformity and electrical parameters. The results show that the uniformity of N2 DBD varies from non-uniform to uniform to non-uniform with increasing voltage amplitude or repetition frequency, and the N2 DBD with lower frequency requires higher voltage to achieve uniform discharge. Increasing the pulse rising/falling edge times leads to a significant decrease in discharge uniformity, and the rising time has a greater impact on the discharge uniformity than the falling time. The emission spectra are measured to compare the changes of chemically active species content under different nanosecond pulse parameters. It is found that increasing the voltage amplitude or repetition frequency enhances the spectral line intensity of each N2 particle. The increase of the pulse rising/falling edge times reduces the spectral line intensity of the main particle. This study reveals the influence mechanism of nanosecond pulse parameters on the N2 DBD process, which is conducive to the preparation of uniform, stable and highly active plasma sources at atmospheric pressure.

     

/

返回文章
返回