卢旭, 吴双, 王森, 方志. 高压电极覆盖介质对气泡放电特性及等离子体–液体相互作用的影响[J]. 高电压技术, 2023, 49(8): 3305-3314. DOI: 10.13336/j.1003-6520.hve.20222054
引用本文: 卢旭, 吴双, 王森, 方志. 高压电极覆盖介质对气泡放电特性及等离子体–液体相互作用的影响[J]. 高电压技术, 2023, 49(8): 3305-3314. DOI: 10.13336/j.1003-6520.hve.20222054
LU Xu, WU Shuang, WANG Sen, FANG Zhi. Effect of High Voltage Electrode Covering Dielectric on Bubble Discharge Characteristics and Plasma-liquid Interaction[J]. High Voltage Engineering, 2023, 49(8): 3305-3314. DOI: 10.13336/j.1003-6520.hve.20222054
Citation: LU Xu, WU Shuang, WANG Sen, FANG Zhi. Effect of High Voltage Electrode Covering Dielectric on Bubble Discharge Characteristics and Plasma-liquid Interaction[J]. High Voltage Engineering, 2023, 49(8): 3305-3314. DOI: 10.13336/j.1003-6520.hve.20222054

高压电极覆盖介质对气泡放电特性及等离子体–液体相互作用的影响

Effect of High Voltage Electrode Covering Dielectric on Bubble Discharge Characteristics and Plasma-liquid Interaction

  • 摘要: 气泡放电能够实现高效的等离子体–液体相互作用,在能源环境、生物医学等领域有着广阔的应用前景。电极结构是决定气泡放电等离子体–液体相互作用效率的关键。增设介质层作为调整电极结构的方式之一,是介质阻挡放电等气相放电中常用的调控放电的手段;但在体系更加复杂、干扰因素更多的气泡放电中,有关介质层对放电特性及等离子体–液体相互作用的影响尚不明确。为此探究了高压电极覆盖介质对气泡放电特性及等离子体–液体相互作用的影响。结果表明,单介质结构中是中间区域丝状放电和尖端区域火花状放电的混合模式放电;而高压电极覆盖介质的双介质结构中是弥散放电。覆盖介质削弱了极性效应但促进了记忆电荷的积累;放电形貌的差异是电场和流场共同作用的结果。在等离子体活性更高的前提下,单介质结构更大的放电–溶液接触面积进一步提高了等离子体–液体相互作用效率,产生的过氧化氢质量浓度达到了32.0 mg/L,远大于双介质结构的0.9 mg/L。更多活性粒子的产生及放电过程中更强的物理化学效应使得单介质结构中溶液性质的变化也更为显著。

     

    Abstract: Bubble discharge enables efficient plasma-liquid interactions and has promising applications in energy, environment, biomedicine and other fields. The efficiency of bubble discharge plasma-liquid interaction is highly dependent on the electrode structure. The addition of dielectric layers as a way of adjusting the electrode structure is a common means of regulating the discharge in gaseous discharges such as dielectric barrier discharges; however, in bubble discharges with more complex systems and more interfering factors, the influence of the dielectric layer on the discharge characteristics and plasma-liquid interactions is unclear. This study investigates the influence of the high voltage electrode covering dielectric on the bubble discharge characteristics and plasma-liquid interaction. The results indicate that the discharge in the single-dielectric structure is a mixed mode of filamentary discharge in the middle region and spark-like discharge in the tip region. Meanwhile, a diffuse discharge is presented in the dual-dielectric structure, whose high voltage electrode is covered with a dielectric layer. The covering dielectric weakens the polar effect but promotes the accumulation of memory charge, while the difference in discharge morphology is the result of the combined effect of the electric and flow fields. Under the premise of higher plasma activity, the larger discharge-solution contact area of the single-dielectric structure further improves the efficiency of the plasma-liquid interaction, producing a hydrogen peroxide concentration of 32.0 mg/L, much greater than the 0.9 mg/L of the dual-dielectric structure. More reactive species and stronger physicochemical effects generated in the discharge process will facilitate more significant changes in the solution properties in the single-dielectric structure.

     

/

返回文章
返回