潘如政, 李怀宇, 崔巍, 曾鑫, 张帅, 邵涛. 基于卷积神经网络与可视图像的类滑动放电模式识别[J]. 高电压技术, 2024, 50(1): 423-431. DOI: 10.13336/j.1003-6520.hve.20222053
引用本文: 潘如政, 李怀宇, 崔巍, 曾鑫, 张帅, 邵涛. 基于卷积神经网络与可视图像的类滑动放电模式识别[J]. 高电压技术, 2024, 50(1): 423-431. DOI: 10.13336/j.1003-6520.hve.20222053
PAN Ruzheng, LI Huaiyu, CUI Wei, ZENG Xin, ZHANG Shuai, SHAO Tao. Pattern Recognition of Microsecond Pulsed Sliding-like Discharge Based on Convolutional Neural Network and Visual Image[J]. High Voltage Engineering, 2024, 50(1): 423-431. DOI: 10.13336/j.1003-6520.hve.20222053
Citation: PAN Ruzheng, LI Huaiyu, CUI Wei, ZENG Xin, ZHANG Shuai, SHAO Tao. Pattern Recognition of Microsecond Pulsed Sliding-like Discharge Based on Convolutional Neural Network and Visual Image[J]. High Voltage Engineering, 2024, 50(1): 423-431. DOI: 10.13336/j.1003-6520.hve.20222053

基于卷积神经网络与可视图像的类滑动放电模式识别

Pattern Recognition of Microsecond Pulsed Sliding-like Discharge Based on Convolutional Neural Network and Visual Image

  • 摘要: 为了提高机器学习算法对类滑动放电模式识别的准确率,提出了一种基于卷积神经网络(convolutional neural networks, CNN)与可视图像识别电晕放电、弥散放电和类滑动放电等模式的方法。通过选取气体体积流量0~16 L/min、电极间隙2~10 mm、脉冲频率0.5~3 kHz等不同条件下的类滑动放电图像构建图像库,搭建CNN模型并优化影响CNN识别性能的超参数,包括网络层数、全连接层(full connected layer, FC)神经元数、卷积核尺寸以及激活函数类型,最后比较了CNN与决策树(decision tree, DT)算法和随机森林(random decision forests, RF)算法的识别效果。结果表明,CNN识别准确率为100%,高于传统机器学习方法。此外,本文还给出了放电模式及条件参数,通过基于反向传播神经网络(back propagation neural networks, BPNN)的聚类分析算法识别弥散放电和类滑动放电,并且准确率为100%。

     

    Abstract: In order to improve the accuracy of machine learning algorithms in recognizing sliding-like discharge patterns, this paper proposes a method based on convolutional neural network (CNN) and visual images which recognizes corona discharge, diffuse discharge, and gliding-like discharge patterns. The image library is constructed by selecting sliding-like discharge images under different conditions such as a gas flow rate of 0~16 L/min, an electrode gap of 2~10 mm, and a pulse frequency of 0.5~3 kHz. Then CNN is built, and the hyperparameters which affect the recognition performance of CNN are optimized, including the number of the network layer, the number of the neuron in the Full Connection (FC) layer, the size of the convolution kernel, and the type of the activation function. Finally, the recognition performance of CNN and Decision Tree (DT) algorithm and Random Forest algorithm (RF) algorithm is compared. The results show that the accuracy of CNN recognition is 100%, which is higher than that of the traditional machine learning method. In addition, the discharge mode and the condition parameters are given. Through the clustering analysis algorithm based on Back Propagation Neural Networks (BPNN), the diffuse discharge and sliding-like discharge are identified, and the accuracy is 100%.

     

/

返回文章
返回