滕陈源, 丁逸超, 张有兵, 李烁, 莫雅俊. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49(7): 2961-2971. DOI: 10.13336/j.1003-6520.hve.20222003
引用本文: 滕陈源, 丁逸超, 张有兵, 李烁, 莫雅俊. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49(7): 2961-2971. DOI: 10.13336/j.1003-6520.hve.20222003
TENG Chenyuan, DING Yichao, ZHANG Youbing, LI Shuo, MO Yajun. Ultra-short-term Photovoltaic Power Prediction Based on VMD-informer-BiLSTM Model[J]. High Voltage Engineering, 2023, 49(7): 2961-2971. DOI: 10.13336/j.1003-6520.hve.20222003
Citation: TENG Chenyuan, DING Yichao, ZHANG Youbing, LI Shuo, MO Yajun. Ultra-short-term Photovoltaic Power Prediction Based on VMD-informer-BiLSTM Model[J]. High Voltage Engineering, 2023, 49(7): 2961-2971. DOI: 10.13336/j.1003-6520.hve.20222003

基于VMD-Informer-BiLSTM模型的超短期光伏功率预测

Ultra-short-term Photovoltaic Power Prediction Based on VMD-informer-BiLSTM Model

  • 摘要: 由于光伏出力的波动性和随机性给电网的规划和运行带来了挑战,因此提高光伏功率预测的精度对提升新能源系统的稳定性具有重要意义。为此提出了一种结合模态分解、多维特征建模、Informer、双向长短期神经网络(bidirectional long short-term memory network,BiLSTM)的超短期光伏组合预测模型。首先通过变分模态分解将光伏功率序列分解成不同频率的本征模态函数(intrinsic mode function,IMF),降低光伏功率信号的非平稳性与复杂度;随后使用离散小波变换提取天气因素中的细节分量,实现不同分解算法的优势互补,并用随机森林算法为每个IMF筛选冗余特征,然后将特征矩阵送入Informer进行建模,提取不同时间步中关键时刻的信息,提高对长时间序列的预测效率;最后为进一步提高模型预测精度,分析误差序列特性,利用BiLSTM进行误差校正。采用实际光伏数据进行算例分析,结果表明所提方法提高了超短期光伏功率预测精度。

     

    Abstract: The volatility and randomness of photovoltaic power pose a challenge to the planning and operation of the power grid, and the improvement in the accuracy of photovoltaic power prediction is of great significance to maintain the stability of the new power system operation. In this paper, an ultra-short-term photovoltaic combination forecasting model based on the Informer is proposed which combined with modal decomposition, multi-dimensional feature modeling, Informer and bidirectional long short-term memory network (BiLSTM). Firstly, the photovoltaic power signals is decomposed into intrinsic mode functions (IMF) of different frequencies by variational mode decomposition to reduce the non-stationarity and complexity of signals. Then, the discrete wavelet transform is used to extract the detail components of the weather factors to realize the complementary advantages of different decomposition algorithms, and the random forest algorithm is used to screen the redundant features for each IMF. Furthermore, the feature matrix is sent to the Informer for modeling, and the critical moment information in different time steps is extracted to improve the prediction efficiency of long time series. Finally, in order to further improve the prediction accuracy of the model, the prediction error is compensated with the BiLSTM after analyzing the characteristics of the error sequence. The model is validated using the actual data, and the results show that the proposed model improves the accuracy of ultra-short-term photovoltaic power prediction.

     

/

返回文章
返回