吉兴全, 朱应业, 张玉敏, 叶平峰, 杨明, 于一潇. 基于DDQN-KRR动态重构策略的综合能源系统运行优化[J]. 高电压技术, 2023, 49(8): 3195-3204. DOI: 10.13336/j.1003-6520.hve.20221960
引用本文: 吉兴全, 朱应业, 张玉敏, 叶平峰, 杨明, 于一潇. 基于DDQN-KRR动态重构策略的综合能源系统运行优化[J]. 高电压技术, 2023, 49(8): 3195-3204. DOI: 10.13336/j.1003-6520.hve.20221960
JI Xingquan, ZHU Yingye, ZHANG Yumin, YE Pingfeng, YANG Ming, YU Yixiao. Operation Optimization of Integrated Energy System Based on DDQN-KRR Dynamic Reconfiguration Strategy[J]. High Voltage Engineering, 2023, 49(8): 3195-3204. DOI: 10.13336/j.1003-6520.hve.20221960
Citation: JI Xingquan, ZHU Yingye, ZHANG Yumin, YE Pingfeng, YANG Ming, YU Yixiao. Operation Optimization of Integrated Energy System Based on DDQN-KRR Dynamic Reconfiguration Strategy[J]. High Voltage Engineering, 2023, 49(8): 3195-3204. DOI: 10.13336/j.1003-6520.hve.20221960

基于DDQN-KRR动态重构策略的综合能源系统运行优化

Operation Optimization of Integrated Energy System Based on DDQN-KRR Dynamic Reconfiguration Strategy

  • 摘要: 在电−气−热互联的综合能源系统优化中考虑配电网动态重构策略是提高系统灵活性和经济性的重要手段。针对考虑配电网动态重构之后模型复杂与求解效率低的问题,提出了基于双层深度Q网络(double deep Q network, DDQN)和内核岭回归(kernel ridge regression, KRR)方法获取配电网动态重构策略,并将其纳入综合能源系统运行优化模型中,通过把耗时较多的模型学习过程转移到训练过程中,仅应用训练好的模型,进而快速得到运行优化结果。首先,建立包含综合能源系统状态与静态重构结果的数据库,依据时间序列并考虑开关动作成本,制定出动态重构策略;其次,提出KRR方法,用于预测耦合机组的最优出力;最后,基于DDQN挖掘综合能源系统状态与重构结果之间的映射关系,实现快速动态重构。以IEEE 33节点配电网、20节点天然气网和16节点热网组成的E33-G20-H16系统以及E78-G40-H32系统为例,验证了所提模型和方法的有效性。

     

    Abstract: It is an important means to consider the dynamic reconfiguration strategy of distribution network in the optimization of integrated energy system (IES) with electric-gas-thermal interconnection to improve the flexibility and economy of the system. In view of the complexity of the model and the low efficiency of solution after considering the dynamic reconfiguration of distribution network (DNR), a method based on double deep Q network (DDQN) and kernel ridge regression (KRR) is proposed to obtain the dynamic DNR strategy and incorporate it into the operation optimization model of IES. By transferring the time-consuming model learning process to the training process, only the trained model is applied, so as to quickly obtain the operation optimization results. Firstly, a database containing the IES states and static DNR results is established. According to the time series, the switching action cost is considered and the dynamic DNR strategy is formulated. Secondly, the KRR method is proposed to predict the optimal output of coupled units. Finally, based on DDQN, the mapping relationship between the IES states and the DNR results is exploited to achieve rapid dynamic DNR. The E33-G20-H16 system composed of IEEE 33 bus distribution network, 20 bus gas network and 16 bus thermal network and E78-G40-H32 is taken as an example, and the effectiveness of the proposed model and method is verified.

     

/

返回文章
返回