李曜丞, 李喆, 许永鹏, 王维良, 江秀臣. 基于立体注意力机制的输电线路图像识别算法[J]. 高电压技术, 2023, 49(8): 3437-3445. DOI: 10.13336/j.1003-6520.hve.20221852
引用本文: 李曜丞, 李喆, 许永鹏, 王维良, 江秀臣. 基于立体注意力机制的输电线路图像识别算法[J]. 高电压技术, 2023, 49(8): 3437-3445. DOI: 10.13336/j.1003-6520.hve.20221852
LI Yaocheng, LI Zhe, XU Yongpeng, WANG Weiliang, JIANG Xiuchen. Image Recognition for Transmission Lines Based on Stereo Attention Mechanism[J]. High Voltage Engineering, 2023, 49(8): 3437-3445. DOI: 10.13336/j.1003-6520.hve.20221852
Citation: LI Yaocheng, LI Zhe, XU Yongpeng, WANG Weiliang, JIANG Xiuchen. Image Recognition for Transmission Lines Based on Stereo Attention Mechanism[J]. High Voltage Engineering, 2023, 49(8): 3437-3445. DOI: 10.13336/j.1003-6520.hve.20221852

基于立体注意力机制的输电线路图像识别算法

Image Recognition for Transmission Lines Based on Stereo Attention Mechanism

  • 摘要: 针对计算资源有限的边缘设备无法支撑复杂的高精度图像识别模型这一实际问题,提出了一种基于EfficientDet和立体注意力机制的输电线路图像识别算法。首先,基础网络采用EfficientNet网络,该模型通过统一缩放网络深度、宽度和输入图像分辨率,获取最佳网络架构。其次,使用BiFPN网络增强模型特征表达能力,改进策略包含增加残差链接、移除单输入边结点、权值融合等。在此基础上,立体注意力机制综合考虑尺度、空间、通道等多维度信息,基于视觉注意力机制进一步优化、整合特征。最终,后续的头部网络利用高质量特征提升物体分类和定位的准确率。实验结果表明,所提框架相较于原版网络准确率提升3.0%,且对于不同参数量、不同结构的网络性能均有所提升。该研究可为输电线路巡检图像的高效识别提供参考。

     

    Abstract: To address the problem that the edge devices with limited computational resources cannot support complex and high-precision image recognition models, an object recognition frame-work based on EfficientDet and stereo attention mechanism is proposed. Firstly, the EfficientNet network which obtains the best architecture by jointly optimizing the network depth, width and input resolution is adopted as backbone network. Then the BiFPN network is used to enhance the representation capability of features, which include improvement strategies such as adding residual links, removing single-input edge nodes, and fusing weights. On this basis, the stereo attention mechanism integrates multi-dimensional information from scale, space, and channel, respectively, and further optimizes and integrates features based on the visual attention mechanism. Finally, the subsequent head networks utilize these high-quality features to enhance the performance of object classification and localization. The test result shows that, compared with the original version, the accuracy of the proposed framework is improved by 3.0%, and the performance is improved for various networks with different number of parameters and structures, which provides a valuable reference for efficient image recognition of transmission lines.

     

/

返回文章
返回