查俊伟, 黄文杰, 杨兴, 万宝全, 郑明胜. 本征耐高温电极化储能聚合物电介质研究进展[J]. 高电压技术, 2023, 49(3): 1055-1066. DOI: 10.13336/j.1003-6520.hve.20221753
引用本文: 查俊伟, 黄文杰, 杨兴, 万宝全, 郑明胜. 本征耐高温电极化储能聚合物电介质研究进展[J]. 高电压技术, 2023, 49(3): 1055-1066. DOI: 10.13336/j.1003-6520.hve.20221753
ZHA Junwei, HUANG Wenjie, YANG Xing, WAN Baoquan, ZHENG Mingsheng. Research Progress of Intrinsic High Temperature Polymer Dielectrics with High Energy Storage by Electric Polarization[J]. High Voltage Engineering, 2023, 49(3): 1055-1066. DOI: 10.13336/j.1003-6520.hve.20221753
Citation: ZHA Junwei, HUANG Wenjie, YANG Xing, WAN Baoquan, ZHENG Mingsheng. Research Progress of Intrinsic High Temperature Polymer Dielectrics with High Energy Storage by Electric Polarization[J]. High Voltage Engineering, 2023, 49(3): 1055-1066. DOI: 10.13336/j.1003-6520.hve.20221753

本征耐高温电极化储能聚合物电介质研究进展

Research Progress of Intrinsic High Temperature Polymer Dielectrics with High Energy Storage by Electric Polarization

  • 摘要: 具有高能量密度、高耐热性和低介电损耗的介电聚合物是先进电力电子应用的理想材料,例如用于电容器的高温储能薄膜。由于高极化和低介电损耗是两个相互矛盾的性质,因而只能在高介电常数(εr)和较低的损耗之间争取最佳的平衡。对于本征型聚合物电介质,介电常数源于电子、原子和偶极极化。然而由于聚合物分子链的性质,碳氢基电介质的电子和原子极化的介电常数被限制在5以下,偶极极化提高固有介电常数是有效的。为此围绕实现本征偶极玻璃聚合物高介电常数获得高储能密度的同时降低介电损耗的设计策略展开,从主链和侧链角度分析冻结链动力学阻止电子传导降低介电损耗的可行性,同时从电子结构角度揭示抑制传导电流的机制,在保持高εr和高玻璃化转变温度(tg)的同时实现高温下高的储能密度,最后对薄膜电容器用极性聚合物研发的难点和重点进行总结和展望。

     

    Abstract: Dielectric polymers with high energy density, high heat resistance, and low dielectric loss are ideal materials for next-generation power and electrical applications, such as high-temperature energy storage films for capacitors. Since high polarization and low dielectric loss are contradictory, high dielectric constant (εr) and low loss should be compromised. For intrinsic polymer dielectrics, the dielectric constant is attributed to electronic, atomic, and dipolar polarization. However, due to the characteristics of polymer molecular bonds, the dielectric constants of electronic and atomic polarization of hydrocarbon-based dielectrics are limited to below 5, and dipole polarization is effective to improve the intrinsic dielectric constants. This review focuses on the design strategy to achieve high energy storage density with high dielectric constants while reducing dielectric loss in intrinsic dipole glass polymers. The feasibility of freezing chain dynamics is analyzed from the perspective of main and side chains to prevent electron conduction and reduce dielectric loss. The mechanism of suppressing conduction current is revealed from the electronic structure perspective to achieve high energy storage density at high temperatures while maintaining high εr and high glass transition temperature (tg). Finally, the challenges and critical points of developing polar polymers for film capacitors are summarized and discussed.

     

/

返回文章
返回