杜军, 李嘉聪, 高远, 窦立广, 潘杰, 邵涛. 脉冲等离子体驱动CO2加氢制备CH3OH电学参数调控对转化特性的影响[J]. 高电压技术, 2023, 49(8): 3275-3285. DOI: 10.13336/j.1003-6520.hve.20221727
引用本文: 杜军, 李嘉聪, 高远, 窦立广, 潘杰, 邵涛. 脉冲等离子体驱动CO2加氢制备CH3OH电学参数调控对转化特性的影响[J]. 高电压技术, 2023, 49(8): 3275-3285. DOI: 10.13336/j.1003-6520.hve.20221727
DU Jun, LI Jiacong, GAO Yuan, DOU Liguang, PAN Jie, SHAO Tao. Effect of Electrical Parameters on Conversion Characteristics of CO2 Hydrogenation to CH3OH by Pulsed Plasma[J]. High Voltage Engineering, 2023, 49(8): 3275-3285. DOI: 10.13336/j.1003-6520.hve.20221727
Citation: DU Jun, LI Jiacong, GAO Yuan, DOU Liguang, PAN Jie, SHAO Tao. Effect of Electrical Parameters on Conversion Characteristics of CO2 Hydrogenation to CH3OH by Pulsed Plasma[J]. High Voltage Engineering, 2023, 49(8): 3275-3285. DOI: 10.13336/j.1003-6520.hve.20221727

脉冲等离子体驱动CO2加氢制备CH3OH电学参数调控对转化特性的影响

Effect of Electrical Parameters on Conversion Characteristics of CO2 Hydrogenation to CH3OH by Pulsed Plasma

  • 摘要: 化石燃料的大量燃烧带来的CO2排放导致的极端环境问题日益严重,因此,开发温和、原位的CO2转化技术路线有助于实现我国“双碳”目标。为此在无催化剂条件下利用纳秒脉冲介质阻挡放电等离子体驱动CO2加氢制备CH3OH,主要研究了脉冲参数,即脉宽、电压幅值、脉冲上下沿对反应体系中电学特性和转化特性的影响,并讨论了其反应机理。实验结果表明,反应物转化率和产物分布与电场变化密切相关。在缺省参数设置下,随着脉宽的增大,反应物转化率不断升高,在脉宽为2500 ns时CO2、H2转化率分别达到最大值6.8%、3.1%;此外,脉冲上下沿的减小有利于液体产物的生成,当脉冲上升沿从500 ns减小至100 ns,总液体选择性达到最大值38.4%;当脉冲下降沿从500 ns减小至100 ns,CH3OH选择性达到最大值31.8%。该研究结果为等离子体驱动CO2加氢制备CH3OH的转化效果优化提供了研究借鉴。

     

    Abstract: The CO2 emissions from the massive burning of fossil fuels result in increasingly serious environmental issues, thus the development of mild and in-situ technology routes for CO2 conversion will contribute to achieving China's "Dual-Carbon" target. In this paper, the CO2 hydrogenation to CH3OH by nanosecond pulsed dielectric barrier discharge plasma under catalyst-free conditions are investigated, and the effects of the pulse parameters (pulse width, maximum peak voltage, rising/falling times) on electrical and conversion characteristics as well as the reaction mechanism are focused on. The results show that reactant conversion and product distribution are strongly correlated with electric field variations. The reactants conversion increases with increasing pulse width under the reference condition, reaching the maximum values of 6.8% and 3.1% for CO2 and H2, respectively, at a pulse width of 2500 ns. Moreover, the reduction of rising time and falling time facilitates the generation of liquid products. The total liquid selectivity reaches a maximum of 38.4% when the rising time decreases from 500 ns to 100 ns. The maximum CH3OH selectivity is 31.8% when the falling time decreases from 500 ns to 100 ns. These results provide a reference for optimizing the conversion effect of plasma-driven CO2 hydrogenation into CH3OH.

     

/

返回文章
返回