王根成, 丛贇, 张振鹏, 金建伟, 钱钢, 黄友聪, 陈志鹏. 桥梁敷设电缆伸缩补偿过程动力学建模及动态响应分析[J]. 高电压技术, 2023, 49(4): 1466-1474. DOI: 10.13336/j.1003-6520.hve.20221628
引用本文: 王根成, 丛贇, 张振鹏, 金建伟, 钱钢, 黄友聪, 陈志鹏. 桥梁敷设电缆伸缩补偿过程动力学建模及动态响应分析[J]. 高电压技术, 2023, 49(4): 1466-1474. DOI: 10.13336/j.1003-6520.hve.20221628
WANG Gencheng, CONG Yun, ZHANG Zhenpeng, JIN Jianwei, QIAN Gang, HUANG Youcong, CHEN Zhipeng. Dynamic Modeling and Dynamic Response Analysis of Cable Laying for Bridge in the Expansion Compensation Process[J]. High Voltage Engineering, 2023, 49(4): 1466-1474. DOI: 10.13336/j.1003-6520.hve.20221628
Citation: WANG Gencheng, CONG Yun, ZHANG Zhenpeng, JIN Jianwei, QIAN Gang, HUANG Youcong, CHEN Zhipeng. Dynamic Modeling and Dynamic Response Analysis of Cable Laying for Bridge in the Expansion Compensation Process[J]. High Voltage Engineering, 2023, 49(4): 1466-1474. DOI: 10.13336/j.1003-6520.hve.20221628

桥梁敷设电缆伸缩补偿过程动力学建模及动态响应分析

Dynamic Modeling and Dynamic Response Analysis of Cable Laying for Bridge in the Expansion Compensation Process

  • 摘要: 桥梁敷设电缆通常采用伸缩补偿装置(OFFSET)用以抵消桥梁位移对电缆本体结构稳定性的影响,OFFSET装置的实时补偿效能对于桥梁敷设电缆的安全运行至关重要。以跨海大桥原型OFFSET为研究对象,建立其刚柔混合多体动力学模型,计算在位移载荷和位移–电流复合载荷下OFFSET装置的补偿效能。将电缆夹具的位移响应计算结果作为边界,通过对电缆本体的电–热–结构有限元仿真获取了电缆本体力学响应。通过将数值仿真结果与原型OFFSET装置补偿试验结果对比验证了所建立模型的有效性。研究结果表明:采用OFFSET装置能够实现设计的补偿效能,桥梁敷设电缆的应力最大分布在固定夹具处。在日环境温度引起的电缆位移和负荷电流的共同作用下,线芯、铝护套上的最大应力分别为84 MPa,155 MPa,最小应力分别为55 MPa,105 MPa;电缆金属铝护套的最大应变为14 881×10−6,最小应变为9340×10−6;电缆固定夹具受到的最大轴力为7.4 kN,最小轴力为4.8 kN;电缆金属结构层上的应力、金属护套的应变以及固定夹具上的轴力呈正弦规律变化。研究成果可为桥梁敷设电缆的OFFSET装置的实时补偿效能和电缆结构状态评估提供了方法和依据。

     

    Abstract: The use of expansion compensation device (OFFSET) in bridge-along cable is to offset the impact of bridge displacement on the stability of the cable structure. The real-time compensating performance of the OFFSET device is crucial for the safe operation of bridge-along cable. Therefore, taking a prototype OFFSET device on a certain sea-crossing bridge as the research object, we established a rigid-flexible hybrid multi-body dynamics model, and simulated the compensating performance of the OFFSET device under displacement load and displacement-current load. Then, the displacement response of the clamp was calculated as the boundary, and the mechanical response of the cable was obtained by the finite element simulation of the electric-thermal-structural coupling model. The validity of the established model was verified by comparing the numerical simulation results with the results of prototype test of OFFSET device. The results show that the OFFSET device can achieve the designed compensation performance, and the maximum stress distribution of the bridge-along cable is located at the fixed clamp. Under the combined action of displacement caused by daily ambient temperature and the load current, the maximum stresses on the conductor and aluminum sheath are 84 MPa and 155 MPa, respectively, and the minimum stresses are 55 MPa and 105 MPa, respectively. The maximum strain of aluminium sheath is 14 881×10−6, and the minimum strain is 9340×10−6. The maximum axial force of the clamp is 7.4 kN, and the minimum axial force is 4.8 kN. The stress on the metal layer of the cable, the strain of the metal sheath and the axial force on the clamp will change in a sine law. The research results provide a methodology and basis for the real-time compensation performance of the OFFSET device and the status evaluation of bridge-along cable.

     

/

返回文章
返回