袁发庭, 杨文韬, 韩毅凛, 陈炜, 姜岚, 唐波. 基于电磁-流热双向耦合的变压器绕组温升计算及结构参数优化[J]. 高电压技术, 2024, 50(3): 952-961. DOI: 10.13336/j.1003-6520.hve.20221530
引用本文: 袁发庭, 杨文韬, 韩毅凛, 陈炜, 姜岚, 唐波. 基于电磁-流热双向耦合的变压器绕组温升计算及结构参数优化[J]. 高电压技术, 2024, 50(3): 952-961. DOI: 10.13336/j.1003-6520.hve.20221530
YUAN Fating, YANG Wentao, HAN Yilin, CHEN Wei, JIANG Lan, TANG Bo. Temperature Rise Calculation and Structure Optimization Research of Transformer Winding Based on Electromagnetic-fluid-thermal Coupling[J]. High Voltage Engineering, 2024, 50(3): 952-961. DOI: 10.13336/j.1003-6520.hve.20221530
Citation: YUAN Fating, YANG Wentao, HAN Yilin, CHEN Wei, JIANG Lan, TANG Bo. Temperature Rise Calculation and Structure Optimization Research of Transformer Winding Based on Electromagnetic-fluid-thermal Coupling[J]. High Voltage Engineering, 2024, 50(3): 952-961. DOI: 10.13336/j.1003-6520.hve.20221530

基于电磁-流热双向耦合的变压器绕组温升计算及结构参数优化

Temperature Rise Calculation and Structure Optimization Research of Transformer Winding Based on Electromagnetic-fluid-thermal Coupling

  • 摘要: 变压器温升是影响其运行状态和使用寿命的关键因素。为了更准确地得到油浸式变压器绕组区域的温度场分布,采用有限元法对绕组的电磁-流热耦合过程进行了数值研究。根据电磁场及流体-温度场分布的特点,建立了变压器及绕组区域的计算模型。基于异构网格节点数据映射方法,将电磁场分析得到的绕组非平均损耗作为热源边界条件加载到流体-温度场计算网格中,并根据每次迭代时的温度对该热源进行修正,实现电磁-流热的双向耦合。在此基础上,建立热点温度与绕组结构参数之间的响应面,开展了对绕组热点温度及导体材料用量最小化的多目标优化研究。采用非支配排序遗传算法(non-dominated sorting genetic algorithm,NSGA-Ⅱ)获得了Pareto最优解,并对Pareto前沿面上的4种优化方案进行了分析。结果表明,优化后的绕组热点温度及导体用量明显降低。该文研究为变压器结构的优化设计提供了一种可行方法。

     

    Abstract: The temperature rise of transformer is the key factor affecting its operating state and service life. In order to obtain the temperature distribution of an oil-immersed transformer in the winding area accurately, the electromagnetic-fluid-thermal coupling process of the winding is numerically studied by the finite element method (FEM). According to the distribution characteristics of electromagnetic and fluid-temperature field, the calculation models of transformer and winding are established, respectively. Based on heterogeneous grid node data mapping method, the non-average winding loss obtained from the electromagnetic field analysis is loaded into the fluid-temperature field grid as the heat source, and the heat source is modified according to the temperature at each iteration. The bidirectional coupling between electromagnetic field and fluid-temperature field is realized. On this basis, the response surface of the hot pot temperature and winding structure parameters is established, and the multi-objective optimization research with the purpose of minimizing the winding hot spot temperature and conductor material consumption is carried out. The Pareto optimal solution is obtained by the non-dominated sorting genetic algorithm (NSGA-Ⅱ), and the four optimization schemes on the Pareto front are analyzed. The results show that the optimized winding hot spot temperature and the amount of conductor are significantly reduced. The research of this paper provides a feasible method for the optimal design of transformer structure.

     

/

返回文章
返回