商立群, 侯亚东, 黄辰浩, 李洪波, 惠泽, 张建涛. 基于IDOA-DHKELM的变压器故障诊断[J]. 高电压技术, 2023, 49(11): 4726-4735. DOI: 10.13336/j.1003-6520.hve.20221483
引用本文: 商立群, 侯亚东, 黄辰浩, 李洪波, 惠泽, 张建涛. 基于IDOA-DHKELM的变压器故障诊断[J]. 高电压技术, 2023, 49(11): 4726-4735. DOI: 10.13336/j.1003-6520.hve.20221483
SHANG Liqun, HOU Yadong, HUANG Chenhao, LI Hongbo, HUI Ze, ZHANG Jiantao. Transformer Fault Diagnosis Based on IDOA-DHKELM[J]. High Voltage Engineering, 2023, 49(11): 4726-4735. DOI: 10.13336/j.1003-6520.hve.20221483
Citation: SHANG Liqun, HOU Yadong, HUANG Chenhao, LI Hongbo, HUI Ze, ZHANG Jiantao. Transformer Fault Diagnosis Based on IDOA-DHKELM[J]. High Voltage Engineering, 2023, 49(11): 4726-4735. DOI: 10.13336/j.1003-6520.hve.20221483

基于IDOA-DHKELM的变压器故障诊断

Transformer Fault Diagnosis Based on IDOA-DHKELM

  • 摘要: 针对溶解气体分析(dissolved gas analysis,DGA)诊断变压器故障准确率偏低的问题,提出了一种基于改进野犬优化算法(improved dingo optimization algorithm,IDOA)优化深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的变压器故障诊断方法。首先采用核主成分分析(kernel principal component analysis,KPCA)对气体数据降维并提取有效的特征量;其次将多项式核函数与高斯核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立DHKELM模型。将反向学习、柯西变异和差分进化算法融入到野犬算法中,并利用2种典型的测试函数对IDOA性能进行测试,证明了IDOA具有更强的稳定性和寻优能力。利用IDOA对DHKELM的关键参数进行寻优,建立IDOA-DHKELM变压器故障诊断模型。最后,将KPCA提取的特征量作为模型的输入集,并对不同变压器故障诊断模型进行仿真验证。研究结果表明,相较于其他模型,IDOA-DHKELM具有更高的变压器故障诊断精度。

     

    Abstract: Aiming at the low accuracy of dissolved gas analysis (DGA) in diagnosing transformer faults, this paper proposes a transformer fault diagnosis based on an improved Dingo optimization algorithm (IDOA) optimized deep hybrid kernel extreme learning machine (DHKELM). Firstly, kernel principal component analysis (KPCA) is used to reduce the dimension of gas data and extract effective feature quantities. Secondly, the polynomial kernel function and Gaussian kernel function are weighted to construct a new hybrid kernel function, and an auto encoder is introduced. The extreme learning machine is improved, and the DHKELM model is established. The superiority of the proposed model is verified by comparing it with other machine learning models. Integrating the reverse learning, Cauchy variation, and differential evolution algorithms into the dingo optimization algorithm and testing the IDOA performance by using two typical test functions demonstrates that IDOA is more stable and optimal. The key parameters of DHKELM are optimized by IDOA, and the IDOA-DHKELM transformer fault diagnosis model is established. Finally, the feature quantity extracted by KPCA is used as the input set, the model is simulated and analyzed, and the algorithm model of DHKELM is optimized by comparing with other optimization algorithms. The results show that IDOA-DHKELM has higher transformer fault diagnosis accuracy compared to other models.

     

/

返回文章
返回