王开艳, 杜浩东, 贾嵘, 刘恒, 梁岩, 王雪妍. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4384. DOI: 10.13336/j.1003-6520.hve.20220503
引用本文: 王开艳, 杜浩东, 贾嵘, 刘恒, 梁岩, 王雪妍. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4384. DOI: 10.13336/j.1003-6520.hve.20220503
WANG Kaiyan, DU Haodong, JIA Rong, LIU Heng, LIANG Yan, WANG Xueyan. Short-term Interval Probability Prediction of Photovoltaic Power Based on Similar Daily Clustering and QR-CNN-BiLSTM Model[J]. High Voltage Engineering, 2022, 48(11): 4372-4384. DOI: 10.13336/j.1003-6520.hve.20220503
Citation: WANG Kaiyan, DU Haodong, JIA Rong, LIU Heng, LIANG Yan, WANG Xueyan. Short-term Interval Probability Prediction of Photovoltaic Power Based on Similar Daily Clustering and QR-CNN-BiLSTM Model[J]. High Voltage Engineering, 2022, 48(11): 4372-4384. DOI: 10.13336/j.1003-6520.hve.20220503

基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测

Short-term Interval Probability Prediction of Photovoltaic Power Based on Similar Daily Clustering and QR-CNN-BiLSTM Model

  • 摘要: 精确的短期光伏功率区间概率预测可以有效量化光伏功率预测的不确定性,对于新型电力系统运行调度避险至关重要。为了提高模型预测性能,基于气象变量的数据特征提出模糊C均值(fuzzy C-means, FCM)聚类方法,将历史数据集聚类为晴天、晴转多云和阴雨天,采用与测试集具有相似天气类型的历史数据作为训练样本训练模型;集合卷积神经网络(convolutional neural network, CNN)模型出色的特征提取优势,双向长短期记忆(bidirectional long short term memory, BiLSTM)神经网络模型擅长双向捕捉长时间序列中长期依赖关系的优势,以及可生成区间预测结果的分位数回归(quantile regression, QR)模型,提出QR-CNN-BiLSTM深度学习融合模型,计及筛选得到的多种气象因素,对光伏功率进行以5 min为间隔的精细时间粒度分类区间预测,最后采用交叉验证和网格搜索方法的核密度估计给出概率密度预测结果。选取多种评价指标对提出的模型进行评价,并与QR-LSTM、QR-BiLSTM模型预测结果做对比分析,结果表明:1)FCM算法能有效实现光伏历史数据集的聚类;2)QR-CNN-BiLSTM融合模型能够生成以5 min为间隔的高质量区间预测结果,95%置信预测区间综合评价指标平均值由QR-LSTM、QR-BiLSTM的0.137 1、0.128 8减小到0.097 1;3)基于交叉验证和网格搜索方法的核密度估计能够实现可靠的光伏功率概率密度预测结果生成。

     

    Abstract: Accurate short-term photovoltaic power interval probability prediction can effectively quantify the uncertainty of photovoltaic power prediction, which is very important for the operation and dispatch of new power systems to avoid risks. In order to improve the prediction performance of the model, a fuzzy C-means (FCM) clustering method is proposed based on the data characteristics of meteorological variables, and the historical data set is clustered into sunny days, sunny to cloudy and rainy days. The historical data of weather types are used as training samples to train the model. The convolutional neural network (CNN) model has excellent feature extraction advantages, and the bidirectional long short term memory (BiLSTM) neural network model is good at capturing long-term dependencies in long time series in both directions. A QR-CNN-BiLSTM deep learning fusion model is proposed after making full use of the advantages of CNN model and BiLSTM model and the advantage of quantile regression (QR) model that can generate interval prediction results. Meanwhile, by taking into account of the various meteorological factors obtained by screening, photovoltaic power is predicted by fine time granularity classification interval at 5 manutes intervals. Finally, the probability density prediction results are obtained by kernel density estimation using cross-validation and grid search methods. Moreover, a variety of evaluation indicators are selected to evaluate the proposed model, and compared with the prediction results of the QR-LSTM and QR-BiLSTM models. The results show that: 1) FCM algorithm can effectively realize the clustering of photovoltaic historical data sets; 2) QR -The CNN-BiLSTM fusion model can generate high-quality interval prediction results at intervals of 5 minutes, and the average value of the comprehensive evaluation index of the 95% confidence prediction interval is reduced from 0.137 1 and 0.128 8 of QR-LSTM and QR-BiLSTM to 0.097 1; 3) kernel density estimation based on cross-validation and grid search methods can generate reliable PV power probability density prediction results.

     

/

返回文章
返回