梁言, 李泽, 刘伟, 王辉, 江秀臣. 基于NSST-SR的GIL局部放电光电图谱融合算法[J]. 高电压技术, 2023, 49(11): 4808-4815. DOI: 10.13336/j.1003-6520.hve.20220301
引用本文: 梁言, 李泽, 刘伟, 王辉, 江秀臣. 基于NSST-SR的GIL局部放电光电图谱融合算法[J]. 高电压技术, 2023, 49(11): 4808-4815. DOI: 10.13336/j.1003-6520.hve.20220301
LIANG YAN, LI Ze, LIU Wei, WANG Hui, JIANG Xiuchen. Image Fusion Method for GIL Photoelectric Partial Discharge Based on NSST-SR[J]. High Voltage Engineering, 2023, 49(11): 4808-4815. DOI: 10.13336/j.1003-6520.hve.20220301
Citation: LIANG YAN, LI Ze, LIU Wei, WANG Hui, JIANG Xiuchen. Image Fusion Method for GIL Photoelectric Partial Discharge Based on NSST-SR[J]. High Voltage Engineering, 2023, 49(11): 4808-4815. DOI: 10.13336/j.1003-6520.hve.20220301

基于NSST-SR的GIL局部放电光电图谱融合算法

Image Fusion Method for GIL Photoelectric Partial Discharge Based on NSST-SR

  • 摘要: 为解决气体绝缘输电线路局部放电光电联合检测过程中因信号缺失对模式识别造成干扰的问题,提出一种基于非下采样剪切波变换(non-subsampled shearlet transform,NSST) 和稀疏表示(sparse representation,SR)的光电图谱融合算法,将光学局放相位分布(phase-resolved partial discharge, PRPD)图谱和特高频局部放电PRPD图谱通过NSST分解为低频和高频子带图,基于最大绝对值和SR进行子带图融合,然后经过NSST逆变换得到融合图谱。最后,提取图谱特征并降维,代入K近邻、支持向量机、朴素贝叶斯和决策树分类器进行模式识别,并与其他融合算法效果进行对比。实验结果表明:不论样本总体数量大小、样本训练集与测试集相对数量比例大小,该文提出的算法均能较完整地融合两种源图谱的信息,局放模式识别准确率高于单一NSST算法或SR算法。在小样本(150)情况下,准确率可达89.2%,样本足够大时,准确率最高可达98.5%;当训练集样本数小于测试集样本数时,准确率依旧在70.0%以上,最高达88.0%。该文提出的融合算法可为提高气体绝缘输电线路局放模式识别准确率提供参考。

     

    Abstract: To solve the problem of pattern recognition interference caused by signal non-correspondence during partial discharge(PD) photoelectric joint detection of gas-insulated transmission line(GIL), this paper proposes an image fusion algorithm based on non-subsampled shearlet transform(NSST) and sparse representation(SR). The phase-resolved partial discharge(PRPD) patterns and the ultra-high frequency PRPD patterns are firstly decomposed into high-frequency and low-frequency subband patterns by NSST. Then, the subband patterns are fused based on maximum absolute value and SR. Next, the fused photoelectric PD patterns are obtained through inverse NSST transformation. Finally, features of the fused patterns are extracted and feature dimensions are reduced. Moreover, K-nearest neighbor(KNN), support vector machine(SVM), naive Bayesian(NB), and decision tree(DT) classifiers are applied for pattern recognition and accuracy comparison with other algorithms. The test results show that, regardless of the overall size of the sample and relative quantity of training set to test set, the proposed algorithm can preserve relatively complete information, and pattern recognition accuracy is much higher than that of a single NSST algorithm or SR algorithm. In the case of a small sample(150), the algorithm can achieve 89.2% recognition accuracy, which can even be up to 98.5% when the sample is large enough. While the training set is smaller than the test set, the recognition accuracy is still above 70.0%, and can be up to 88.0%, which provides a reference for improving the PD pattern recognition accuracy of GIL.

     

/

返回文章
返回