杨桂兴, 王维庆, 姚红雨, 袁铁江, 郭小龙. 基于1DCNN-BP的非侵入式负荷识别算法[J]. 高电压技术, 2023, 49(7): 3031-3039. DOI: 10.13336/j.1003-6520.hve.20220286
引用本文: 杨桂兴, 王维庆, 姚红雨, 袁铁江, 郭小龙. 基于1DCNN-BP的非侵入式负荷识别算法[J]. 高电压技术, 2023, 49(7): 3031-3039. DOI: 10.13336/j.1003-6520.hve.20220286
YANG Guixing, WANG Weiqing, YAO Hongyu, YUAN Tiejiang, GUO Xiaolong. Research on Non-intrusive Load Identification Method Based on 1DCNN-BP[J]. High Voltage Engineering, 2023, 49(7): 3031-3039. DOI: 10.13336/j.1003-6520.hve.20220286
Citation: YANG Guixing, WANG Weiqing, YAO Hongyu, YUAN Tiejiang, GUO Xiaolong. Research on Non-intrusive Load Identification Method Based on 1DCNN-BP[J]. High Voltage Engineering, 2023, 49(7): 3031-3039. DOI: 10.13336/j.1003-6520.hve.20220286

基于1DCNN-BP的非侵入式负荷识别算法

Research on Non-intrusive Load Identification Method Based on 1DCNN-BP

  • 摘要: 针对目前非侵入式负荷识别算法未能兼顾负荷识别的准确性、部署在嵌入式设备上可行性的问题,提出了一种基于决策树思想的1DCNN-BP负荷识别算法。首先,为实现在负荷组合投切情况下的负荷特征提取及数据特征降维,设计了能够消除背景负荷干扰的两阶段事件检测算法,提出了基于曲线描述的UI空间序列特征提取方法。其次,为了具备泛化能力、高识别率以及部署在嵌入式设备上的可行性与经济性,提出以序列特征、负荷功率、谐波特征为输入的基于决策树思想的1DCNN-BP负荷识别方法。最后,基于Plaid、Blued-A公开数据集进行算例分析,在所需RAM、ROM仅有几十KB的条件下,识别准确率分别达到92.3%及100%,为后续用户侧能量管理奠定了基础。

     

    Abstract: Aiming at the problem that the current non-intrusive load identification algorithm fails to take into account the accuracy of load identification and the feasibility of deploying on embedded devices, a 1DCNN-BP load identification algorithm based on the idea of decision tree is proposed. First, in order to realize the extraction of load features and the dimensionality reduction of data features in the case of load combination switching, a two-stage event detection algorithm that can eliminate background load interference is designed, and a UI space sequence feature extraction method based on curve description is proposed. Secondly, in order to have the generalization ability, high recognition rate, and the feasibility and economy of deploying on embedded devices, a 1DCNN-BP load identification method based on the idea of decision tree is proposed, which takes sequence features, load power and harmonic features as inputs. Finally, based on the Plaid and Blued-A public data sets, an example analysis is carried out. Under the condition that the required RAM and ROM are only tens of KB, the recognition accuracy rate reaches 92.3% and 100%, respectively, laying a solid foundation for the subsequent user-side energy management.

     

/

返回文章
返回