汝承印, 张仕海, 张子淼, 朱冶诚, 梁玉真. 基于轻量级MobileNet-SSD和MobileNetV2- DeeplabV3+的绝缘子故障识别方法[J]. 高电压技术, 2022, 48(9): 3670-3679. DOI: 10.13336/j.1003-6520.hve.20220022
引用本文: 汝承印, 张仕海, 张子淼, 朱冶诚, 梁玉真. 基于轻量级MobileNet-SSD和MobileNetV2- DeeplabV3+的绝缘子故障识别方法[J]. 高电压技术, 2022, 48(9): 3670-3679. DOI: 10.13336/j.1003-6520.hve.20220022
RU Chengyin, ZHANG Shihai, ZHANG Zimiao, ZHU Yecheng, LIANG Yuzhen. Fault Identification Method for High Voltage Power Grid Insulator Based on Lightweight MobileNet-SSD and MobileNetV2-DeeplabV3+ Network[J]. High Voltage Engineering, 2022, 48(9): 3670-3679. DOI: 10.13336/j.1003-6520.hve.20220022
Citation: RU Chengyin, ZHANG Shihai, ZHANG Zimiao, ZHU Yecheng, LIANG Yuzhen. Fault Identification Method for High Voltage Power Grid Insulator Based on Lightweight MobileNet-SSD and MobileNetV2-DeeplabV3+ Network[J]. High Voltage Engineering, 2022, 48(9): 3670-3679. DOI: 10.13336/j.1003-6520.hve.20220022

基于轻量级MobileNet-SSD和MobileNetV2- DeeplabV3+的绝缘子故障识别方法

Fault Identification Method for High Voltage Power Grid Insulator Based on Lightweight MobileNet-SSD and MobileNetV2-DeeplabV3+ Network

  • 摘要: 当前的深度学习算法多存在模型参数量大、对硬件要求较高等方面的问题,难以嵌入到无人机等移动设备。为了使无人机搭载轻量级模型对架空输电线路中的绝缘子进行故障识别,提出了一种轻量级MobileNet-SSD目标检测网络与轻量级MobileNetV2-DeeplabV3+图像分割网络相结合的绝缘子自爆故障识别、分割方法。该方法首先利用MobileNet-SSD对绝缘子进行精确分类及定位,再结合MobileNetV2-DeeplabV3+语义分割算法对绝缘子自爆图片进行分割。实例表明:该方法能够快速地识别出绝缘子,并可以对各种复杂背景下的自爆绝缘子进行准确分割,同时具备模型参数量小、效率高、鲁棒性强等特征,可在一定程度上满足无人机的嵌入式应用要求,提高基于无人机对架空输电线路的巡检精度和实时性。

     

    Abstract: Because of large amount of parameters and high hardware requirements, current deep learning algorithms are difficult to be embedded in drones and other mobile devices. In order to enable the drone to carry a lightweight model and to identify the surface faults of overhead transmission lines insulators, the MobileNet-SSD target detection network and MobileNetV2-DeeplabV3+ image segmentation network are integrated to identify and segment the self-explosion faults off insulators. Based on the network characteristics, the MobileNet-SSD is used to accurately classify and locate the insulators firstly, and then the semantic segmentation algorithms of MobileNetV2-DeeplabV3+ are used to segment the self-explosion pictures of insulator. The example analysis shows that the insulators can be identified quickly and the self-explosion faults of insulators can be segmented accurately based on the proposed method even if the backgrounds are complex. The proposed method has the characteristics of less model parameters, high computing efficiency, strong robustness etc, and it can meet the embedded application requirements. Therefore, the accuracy and real-time of inspection for overhead transmission lines by drones can be improved.

     

/

返回文章
返回