白成杰, 李娜, 杜军, 宗丽君, 陈童, 潘杰. 等离子体催化合成氨的气相−表面耦合数值建模与机理[J]. 高电压技术, 2022, 48(3): 1142-1151. DOI: 10.13336/j.1003-6520.hve.20210250
引用本文: 白成杰, 李娜, 杜军, 宗丽君, 陈童, 潘杰. 等离子体催化合成氨的气相−表面耦合数值建模与机理[J]. 高电压技术, 2022, 48(3): 1142-1151. DOI: 10.13336/j.1003-6520.hve.20210250
BAI Chengjie, LI Na, DU Jun, ZONG Lijun, CHEN Tong, PAN Jie. Numerical Modeling and Mechanism of Gas Phase-surface Coupling for Plasma Catalytic Ammonia Synthesis[J]. High Voltage Engineering, 2022, 48(3): 1142-1151. DOI: 10.13336/j.1003-6520.hve.20210250
Citation: BAI Chengjie, LI Na, DU Jun, ZONG Lijun, CHEN Tong, PAN Jie. Numerical Modeling and Mechanism of Gas Phase-surface Coupling for Plasma Catalytic Ammonia Synthesis[J]. High Voltage Engineering, 2022, 48(3): 1142-1151. DOI: 10.13336/j.1003-6520.hve.20210250

等离子体催化合成氨的气相−表面耦合数值建模与机理

Numerical Modeling and Mechanism of Gas Phase-surface Coupling for Plasma Catalytic Ammonia Synthesis

  • 摘要: 等离子体催化合成氨是低功耗、小型化、工艺简明且无需高温高压条件的新兴可持续固氮技术。为此将Fe/γ-Al2O3催化剂表面反应嵌入ZDPlaskin求解器,合理建立等离子体催化合成氨的气相−表面耦合动力学模型,具体给出振动激发、碰壁驰豫和表面反应的反应速率系数计算方法,研究了反应气氮、氢摩尔分数比r(N2):r(H2)对合成氨中电子能量沉积、反应路径贡献率与损耗率和粒子摩尔分数的影响,通过循环反应路径图及系统示意图阐明等离子体催化合成氨的气相−表面耦合动力学机理,并讨论r(N2):r(H2)=3:1时粒子数密度的时间演化特性。结果表明:NH3密度随N2含量的提高先增大后减小,在r(N2):r(H2)=3:1时达到最大值;此时,振动激发粒子获得更充足的电子能量沉积并解离吸附产生更高数密度的吸附态粒子N(s)和H(s),与r(N2):r(H2)=1:3时相比NH2+H2→NH3+H提高近103倍的反应产率且NH2(s)+H(s)→NH3+Surf+Surf(Surf是催化剂表面活性位点)提高约24%产氨贡献率,NH和NH2等中间产物与氨形成的循环反应体系有更大的正反向产率差,在更明显的等离子体–催化剂协同效应下NH3数密度达到最大值。

     

    Abstract: Plasma catalytic ammonia synthesis is a new sustainable nitrogen fixation technology which possesses the characteristics of low power consumption, miniaturization, simple process and not requiring high temperatures and high pressures. In this paper, the surface reaction on Fe/γ-Al2O3 catalyst is embedded in the ZDPlaskin solver, the gas phase-surface coupling kinetics model of the plasma catalytic synthesis ammonia is reasonably established, and the calculation methods of reaction rate coefficients of the vibrational excitation, the wall relaxation and the surface reaction are specifically given. Effects of molar fraction ratio of the reaction gas nitrogen-to-hydrogen r(N2): r(H2) on the electron energy deposition, the contribution rate and loss rate of key reaction paths, and the particle mole fraction in ammonia synthesis are investigated. The gas phase-surface coupling kinetics mechanism of the plasma catalytic ammonia synthesis is expounded by the cyclic reaction path diagram and system diagram, in addition, the particle number density temporal evolution characteristics are discussed when r(N2): r(H2)= 3:1. The results show that the density of NH3 increases first and then decreases with the increase of N2 content, and reaches the maximum when r(N2): r(H2)= 3:1. At this time, the vibrationally excited particles obtain more sufficient electron energy deposition, producing higher number density of adsorbed particles N(s) and H(s) by dissociation and adsorption. Compared with the rate when r(N2): r(H2)=1:3, the reaction production rate of NH2+H2→NH3+H improves by nearly 103 times and the ammonia contribution rate of NH2(s)+H(s)→NH3+Surf+Surf (Surf is the active site on catalyst surface) increases by about 24%. Furthermore, the circulating reactions system formed between NH, NH2 and other intermediates and NH3 has a greater difference in forward-and-reverse yields, so that the NH3 number density is maximum under the more obvious plasma-catalyst synergism.

     

/

返回文章
返回