熊玮, 徐浩, 徐林享, 朱可凡, 易本顺. 计及时间累积效应的RF-APJA-MKRVM输电线路覆冰组合预测模型[J]. 高电压技术, 2022, 48(3): 948-957. DOI: 10.13336/j.1003-6520.hve.20210151
引用本文: 熊玮, 徐浩, 徐林享, 朱可凡, 易本顺. 计及时间累积效应的RF-APJA-MKRVM输电线路覆冰组合预测模型[J]. 高电压技术, 2022, 48(3): 948-957. DOI: 10.13336/j.1003-6520.hve.20210151
XIONG Wei, XU Hao, XU Linxiang, ZHU Kefan, YI Benshun. Combined Model of Icing Prediction of Transmission Lines Based on RF-APJA-MKRVM Considering Time Cumulative Effect[J]. High Voltage Engineering, 2022, 48(3): 948-957. DOI: 10.13336/j.1003-6520.hve.20210151
Citation: XIONG Wei, XU Hao, XU Linxiang, ZHU Kefan, YI Benshun. Combined Model of Icing Prediction of Transmission Lines Based on RF-APJA-MKRVM Considering Time Cumulative Effect[J]. High Voltage Engineering, 2022, 48(3): 948-957. DOI: 10.13336/j.1003-6520.hve.20210151

计及时间累积效应的RF-APJA-MKRVM输电线路覆冰组合预测模型

Combined Model of Icing Prediction of Transmission Lines Based on RF-APJA-MKRVM Considering Time Cumulative Effect

  • 摘要: 输电线路覆冰事故对电网系统安全运行具有极大的破坏性,对覆冰厚度进行预测能够有效及时地指导电网抗冰工作。为了实现覆冰的准确短期预测,从线路覆冰是一种时间累积过程的角度出发,提出计及时间累积效应的RF-APJA-MKRVM组合预测模型,对不同覆冰阶段进行预测。首先利用随机森林(random forest,RF)算法选择影响线路覆冰的最主要因素并采用自适应并行Jaya(adaptive parallel Jaya algorithm,APJA)算法优化多核相关向量机(multi-kernel relevance vector machine,MKRVM)参数,建立覆冰增长率组合预测模型;最后,在组合预测模型基础上,考虑覆冰增长的时间累积效应与不同阶段的初始厚度,得到覆冰厚度预测结果。通过贵州电网在线监测系统提取的实际覆冰相关数据,得到预测模型在覆冰增长、稳定和融化阶段的平均均方根误差分别为0.130、0.121、0.137,验证了预测模型的有效性。与同类型方法相比,其准确度有了进一步提高,同时区分了不同阶段的覆冰预测,能为输电线路除冰工作提供更有针对性的指导。

     

    Abstract: Transmission line icing accident is very destructive to the safe operation of power grid system. The prediction of icing thickness can effectively guide the ice-resistant work of power grid. In order to realize the accurate short-term prediction of icing, a combined prediction model of RF-APJA-MKRVM considering time cumulative effect is proposed from the point of view that line icing is a time accumulation process to predict different icing stages. Firstly, the random forest algorithm is used to select the most important factors affecting icing, and the adaptive parallel Jaya algorithm is used to optimize the multi-kernel relevance vector machine to establish the combined prediction model of icing growth rate. Finally, on the basis of the combined prediction model, by taking into account the time cumulative effect of icing growth and the initial thickness of different stages, the prediction results of final icing thickness are obtained. Based on the related data of actual icing collected by online monitoring system of Guizhou Power Grid, it is verified that the average root mean square error of the prediction model in the icing growth, stability and melting stages are 0.130, 0.121 and 0.137, respectively, which confirms the effectiveness of the prediction model. Compared with the similar algorithms, its accuracy has been greatly improved, and the icing prediction in different stages is distinguished, which can provide a certain reference for transmission line deicing work.

     

/

返回文章
返回