史荣斌, 秦炜淇, 张猛, 周宏扬, 王浩, 叶三排, 马国明. 特高压C4F7N/CO2混合气体GIL温度分布[J]. 高电压技术, 2022, 49(2): 698-705. DOI: 10.13336/j.1003-6520.hve.20210097
引用本文: 史荣斌, 秦炜淇, 张猛, 周宏扬, 王浩, 叶三排, 马国明. 特高压C4F7N/CO2混合气体GIL温度分布[J]. 高电压技术, 2022, 49(2): 698-705. DOI: 10.13336/j.1003-6520.hve.20210097
SHI Rongbin, QIN Weiqi, ZHANG Meng, ZHOU Hongyang, WANG Hao, YE Sanpai, MA Guoming. Temperature Distribution of UHV C4F7N/CO2 Mixed Gas GIL[J]. High Voltage Engineering, 2022, 49(2): 698-705. DOI: 10.13336/j.1003-6520.hve.20210097
Citation: SHI Rongbin, QIN Weiqi, ZHANG Meng, ZHOU Hongyang, WANG Hao, YE Sanpai, MA Guoming. Temperature Distribution of UHV C4F7N/CO2 Mixed Gas GIL[J]. High Voltage Engineering, 2022, 49(2): 698-705. DOI: 10.13336/j.1003-6520.hve.20210097

特高压C4F7N/CO2混合气体GIL温度分布

Temperature Distribution of UHV C4F7N/CO2 Mixed Gas GIL

  • 摘要: 气体绝缘金属封闭输电线路(gas insulated metal-enclosed transmission line,GIL)中绝缘气体热学特性会影响GIL整体绝缘性能。目前,国内外对C4F7N/CO2混合新型环保气体应用于GIL的研究刚刚起步,其热学特性尚不明确。为此对特高压C4F7N/CO2混合气体GIL建立了温度−流体多物理场仿真模型,通过开展现场温升试验对该模型进行了有效性验证,研究了额定电流下GIL内部温度场分布及内部气体密度场、流速场分布,以及不同通流水平下导体和铝合金外壳顶部温升关系,并对比分析了在C4F7N/CO2与SF6两种不同气体下GIL内部温升的差异性。研究结果表明:C4F7N/CO2气体GIL内部温度梯度整体大于SF6气体GIL,在后续环保型GIL设计中应关注这一问题;相同通流条件下C4F7N/CO2气体GIL与SF6气体GIL温度分布差异的主要原因为SF6对流性能优于C4F7N/CO2混合气体;探索了C4F7N/CO2 GIL外壳顶部温升与GIL中心导体温升间的关系,GIL导–壳温升比例系数为0.482,该系数可应用于后续基于外壳温度的中心导体温度监测系统中。

     

    Abstract: The thermal properties of the insulating gas in a gas insulated metal-enclosed transmission line (GIL) will affect the overall insulation performance of the GIL. At present, domestic and foreign research on the application of C4F7N/CO2 mixed environmentally friendly gas to GIL has just started, and its thermal characteristics are still unclear. Therefore, we established a temperature-fluid multi-physical field coupling simulation model for the environment-friendly UHV C4F7N/CO2 mixed gas GIL and conducted simulation research. An on-site temperature rise test to effectively verify the model was also conducted. The research results indicate that the internal temperature gradient of environmental-friendly GIL is larger than that of SF6 GIL, which should be paid attention to in the subsequent design of environmental-friendly GIL. The convection performance of SF6 is better than that of C4F7N/CO2 mixed gas, which will cause differences of temperature distribution in GIL. The relationship between the temperature rise of GIL center conductor and the top of the C4F7N/CO2 GIL shell is explored, and the GIL conductor-case temperature rise response coefficient is defined. This coefficient can be applied to the subsequent center conductor temperature monitoring system based on the shell temperature.

     

/

返回文章
返回