杨子民, 彭小圣, 郎建勋, 王洪雨, 王勃, 刘纯. 基于集群动态划分与BLSTM深度学习的风电集群短期功率预测[J]. 高电压技术, 2021, 47(4): 1195-1203. DOI: 10.13336/j.1003-6520.hve.20210079
引用本文: 杨子民, 彭小圣, 郎建勋, 王洪雨, 王勃, 刘纯. 基于集群动态划分与BLSTM深度学习的风电集群短期功率预测[J]. 高电压技术, 2021, 47(4): 1195-1203. DOI: 10.13336/j.1003-6520.hve.20210079
YANG Zimin, PENG Xiaosheng, LANG Jianxun, WANG Hongyu, WANG Bo, LIU Chun. Short-term Wind Power Prediction Based on Dynamic Cluster Division and BLSTM Deep Learning Method[J]. High Voltage Engineering, 2021, 47(4): 1195-1203. DOI: 10.13336/j.1003-6520.hve.20210079
Citation: YANG Zimin, PENG Xiaosheng, LANG Jianxun, WANG Hongyu, WANG Bo, LIU Chun. Short-term Wind Power Prediction Based on Dynamic Cluster Division and BLSTM Deep Learning Method[J]. High Voltage Engineering, 2021, 47(4): 1195-1203. DOI: 10.13336/j.1003-6520.hve.20210079

基于集群动态划分与BLSTM深度学习的风电集群短期功率预测

Short-term Wind Power Prediction Based on Dynamic Cluster Division and BLSTM Deep Learning Method

  • 摘要: 风电集群的整体功率预测对区域风电的优化调度具有重要意义,现有集群预测方法并未考虑集群内各风电场数值天气预报(numerical weather prediction, NWP)信息在时间序列上的差异性波动,并按此进行集群的合理划分。为此,提出了基于天气过程动态划分的风电集群短期功率预测方法。首先将96 h时间尺度的待预测样本均分成16份等时长的子样本;然后对每份子样本分别进行集群的聚类与划分;再依据划分结果构建各子样本所含子集群的训练集;最后通过双向长短期记忆(bidirectional long short-term memory,BLSTM)人工神经网络对各子集群进行功率预测。算例结果表明,所提方法在4 h超短期预测、24 h日前预测、96 h短期预测中相较统计升尺度法可分别提高1.69%、0.77%和0.59%的精度。论文研究可为风电集群划分和短期功率预测提供参考。

     

    Abstract: The wind power prediction for wind farm clusters is important for optimal scheduling of regional wind farms. The existing cluster prediction algorithms and cluster division methods do not consider the differential fluctuations among stations' numerical weather prediction (NWP) along time scale, and the cluster isn't divided reasonably. Consequently, we put forward a short-term wind power prediction method based on weather-process-dynamic wind farm cluster division. First, the 96-hour-time-scale prediction sample is equally divided into 16 sub-samples, followed by separate cluster division judging for each sub-sample. Then, the training set is organized for each sub-sample's sub-cluster according to cluster division result. Finally, the bidirectional long-short term memory (BLSTM) neural network is used for power prediction for each sub-cluster. The results show that, using the proposed method, the prediction accuracy can increase by 1.69%, 0.77%, and 0.59% compared to using the statistical upscaling method in 4 h-urtra-short-term, 24 h-day-ahead, and 96 h-short-term wind power prediction, respectively. The research can provide a reference for the topic of wind farm cluster division and short-term power prediction.

     

/

返回文章
返回