靳晶新, 叶林, 陆佳政, 赵永宁, 何博宇, 李镓辰. 融合多维气象信息的风能资源评估方法[J]. 高电压技术, 2022, 48(2): 477-487. DOI: 10.13336/j.1003-6520.hve.20201827
引用本文: 靳晶新, 叶林, 陆佳政, 赵永宁, 何博宇, 李镓辰. 融合多维气象信息的风能资源评估方法[J]. 高电压技术, 2022, 48(2): 477-487. DOI: 10.13336/j.1003-6520.hve.20201827
JIN Jingxin, YE Lin, LU Jiazheng, ZHAO Yongning, HE Boyu, LI Jiachen. Combined Method for Wind Energy Resource Assessment Considering Multi-dimensional Meteorological Information[J]. High Voltage Engineering, 2022, 48(2): 477-487. DOI: 10.13336/j.1003-6520.hve.20201827
Citation: JIN Jingxin, YE Lin, LU Jiazheng, ZHAO Yongning, HE Boyu, LI Jiachen. Combined Method for Wind Energy Resource Assessment Considering Multi-dimensional Meteorological Information[J]. High Voltage Engineering, 2022, 48(2): 477-487. DOI: 10.13336/j.1003-6520.hve.20201827

融合多维气象信息的风能资源评估方法

Combined Method for Wind Energy Resource Assessment Considering Multi-dimensional Meteorological Information

  • 摘要: 由于风速具有明显的年际变化,因此风电场项目建设在可行性分析过程中需要对场址区域长期的资源状况进行评价。为此,在传统测量−关联−预测方法的基础上,研究提出了一种基于多维气象信息交互的方法,将多个参考气象站风速、风向、气温、空气密度等观测信息与待评估风场同期风速信息进行融合,得到待评估风场长期的风况信息,进而推算出待评估风场长期的风能资源储量。首先,使用Pearson相关系数对待评估风场和参考气象站进行相关性分析;然后,结合因素分析法对重要性特征进行筛选,以避免冗余信息对结果准确性和计算效率造成影响;最后,采用随机森林模型和XGBoost模型分别构建不同规则的集成模型,并与实际观测数据进行对比分析。研究结果表明,多维气象特征的引入可以有效提升待建风电场长期风速的拟合效果,进而提升风能资源评估结果的精度,满足实际工程的需要。

     

    Abstract: Due to the obvious inter-annual variation of wind speed, the long-term resource status of the site area needs to be evaluated in the process of feasibility analysis of wind farm project construction. Based on measurement-correla- tion-prediction (MCP), a meta-learning fusion evaluation method considering multi-area meteorological characteristics is proposed in this paper. The observation information of wind speed, wind direction, air temperature and air density of several reference meteorological stations is combined with the same period wind speed information of the wind farm to be evaluated, so that the long-term wind condition information of the wind field to be evaluated is obtained, and then the long-term wind energy reserves of the wind farm to be evaluated are calculated. Firstly, the Pearson correlation coefficient is used to analyze the wind speed correlation between the target wind farm and the reference station. Then, the feature factor method is used to select key characteristics to avoid redundant information from affecting the accuracy of the results and the efficiency of calculations. Eventually, different ensemble models, i.e., the Random Forest model and the XGBoost model, are used to establish short-term correlate model. Comparison of predicted results and actual observation is used to verify the validity of proposed approach. The research results show that the introduction of multi-dimensional meteorological features can effectively improve the fitting effect of the long-term wind speed of the wind farm to be built, and then improve the accuracy of the evaluation results of wind energy resources to meet the needs of practical projects.

     

/

返回文章
返回