王育飞, 杨启星, 薛花. 考虑混沌特征的增强型大脑情绪神经网络光伏发电功率超短期预测模型[J]. 高电压技术, 2021, 47(4): 1165-1175. DOI: 10.13336/j.1003-6520.hve.20201811
引用本文: 王育飞, 杨启星, 薛花. 考虑混沌特征的增强型大脑情绪神经网络光伏发电功率超短期预测模型[J]. 高电压技术, 2021, 47(4): 1165-1175. DOI: 10.13336/j.1003-6520.hve.20201811
WANG Yufei, YANG Qixing, XUE Hua. Ultra-short-term Prediction Model of Enhanced Brain Emotional Neural Network Considering Chaotic Characteristics for Photovoltaic Power Generation[J]. High Voltage Engineering, 2021, 47(4): 1165-1175. DOI: 10.13336/j.1003-6520.hve.20201811
Citation: WANG Yufei, YANG Qixing, XUE Hua. Ultra-short-term Prediction Model of Enhanced Brain Emotional Neural Network Considering Chaotic Characteristics for Photovoltaic Power Generation[J]. High Voltage Engineering, 2021, 47(4): 1165-1175. DOI: 10.13336/j.1003-6520.hve.20201811

考虑混沌特征的增强型大脑情绪神经网络光伏发电功率超短期预测模型

Ultra-short-term Prediction Model of Enhanced Brain Emotional Neural Network Considering Chaotic Characteristics for Photovoltaic Power Generation

  • 摘要: 为进一步提高光伏发电功率超短期预测的准确度,根据光伏功率时间序列固有的非线性混沌特征,提出一种基于改进粒子群优化(improved particle swarm optimization, IPSO)算法和增强型大脑情绪神经网络(enhanced brain emotional neural network, EENN)的光伏发电功率超短期预测模型。首先,利用非线性变换将光伏功率序列的隐含信息特征投射至高维相空间,获得反映吸引子轨迹的新数据空间;随后,为提高模型的超短期预测能力,通过考虑系统在空间中连续吸引子轨迹的非线性几何特征,利用EENN模型建立高维空间中的数据映射关系,并采用IPSO算法实现对EENN模型中所有权值和阈值的迭代优化,以提高EENN模型的数据挖掘和预测能力;最后,基于实测光伏发电功率数据进行单步预测以实现对所提模型的有效验证。算例分析表明,所提预测模型具有比传统模型更好的预测效果,有效提高了光伏功率超短期预测的准确度。

     

    Abstract: In order to further improve the accuracy of ultra-short-term prediction of photovoltaic(PV) power generation, a ultra-short-term PV power prediction model based on improved particle swarm optimization (IPSO) algorithm and enhanced brain emotional neural network (EENN) is proposed according to the inherent nonlinear chaotic characteristics of PV power time series. Firstly, the implicit information features of the PV power sequence are projected to the high-dimensional phase space by nonlinear transformation to form a new data space of attractor trajectory. Then, in order to improve the ultra-short-term prediction ability of the model, by considering nonlinear geometric characteristics of continuous attractor trajectories in space, the EENN model is used to map the relation of data in high dimensional space. And the internal weight and threshold of EENN are iteratively optimized by IPSO to improve the EENN model of data mining and forecasting abilities. Finally, based on the measured PV power generation data, the proposed model is verified effectively by single step prediction. The calculation example shows that the proposed prediction model has better prediction effect than traditional model, and it can effectively improve the ultra-short term prediction accuracy of PV power.

     

/

返回文章
返回