杨茂, 许传宇, 王凯旋. 基于切换输出机制的超短期风电功率预测[J]. 高电压技术, 2022, 48(2): 420-429. DOI: 10.13336/j.1003-6520.hve.20201712
引用本文: 杨茂, 许传宇, 王凯旋. 基于切换输出机制的超短期风电功率预测[J]. 高电压技术, 2022, 48(2): 420-429. DOI: 10.13336/j.1003-6520.hve.20201712
YANG Mao, XU Chuanyu, WANG Kaixuan. Ultra-short-term Wind Power Forecasting Based on Switching Output Mechanism[J]. High Voltage Engineering, 2022, 48(2): 420-429. DOI: 10.13336/j.1003-6520.hve.20201712
Citation: YANG Mao, XU Chuanyu, WANG Kaixuan. Ultra-short-term Wind Power Forecasting Based on Switching Output Mechanism[J]. High Voltage Engineering, 2022, 48(2): 420-429. DOI: 10.13336/j.1003-6520.hve.20201712

基于切换输出机制的超短期风电功率预测

Ultra-short-term Wind Power Forecasting Based on Switching Output Mechanism

  • 摘要: 超短期风电功率预测可为机组控制和能源经济调度提供重要指导。为削弱风能波动性对于超短期风电功率预测精度的影响,提出了一种引入风速信息的切换输出机制,基于风速与功率的物理模型,分析了风速波动特征。对于波动特征超出门限值的时点,根据机组的惯性运行特性,构建不同风速变化情景下的风速–功率转化模型;对于平缓出力阶段,考虑到时序建模中单一模型的固有限制,提出一种不同运行状态下的超短期预测框架。将所提预测方法用于东北某风电场进行算例验证,结果表明:相比于单一模型的预测结果,所提方法可将均方根误差在13.58%~16.39%的基础上降低1.31%~4.12%。研究结果表明,所提方法可以有效提高超短期风功率的预测精度。

     

    Abstract: Ultra-short-term wind power forecasting provides important guidance for unit control and energy economic dispatching. In order to weaken the influence of wind energy volatility on the prediction accuracy of ultra-short-term wind power, a switching output mechanism with wind speed information is proposed to analyze the characteristics of wind speed fluctuation based on the physical model of wind speed and power. For the time point when the fluctuation characteristic exceeds the threshold, according to the inertia operation characteristics of the unit, a wind speed-power conversion model under different wind speed variation scenarios is constructed. For the gentle output stage, considering the inherent limitation of a single model in time series modeling, an ultra-short-term prediction framework under different operating conditions is proposed. The proposed prediction method is applied to a wind farm in Northeast China for example verification. Compared with the prediction results of single model, the proposed method can be utilized to reduce the root mean square error by 1.31%~4.12% on the basis of 13.58%~16.39%. The results show that the proposed method can be utilized to effectively improve the accuracy of ultra-short-term wind power prediction.

     

/

返回文章
返回