杨茂, 王凯旋. 基于CEEMD-DBN模型的光伏出力日前区间预测[J]. 高电压技术, 2021, 47(4): 1156-1164. DOI: 10.13336/j.1003-6520.hve.20201406
引用本文: 杨茂, 王凯旋. 基于CEEMD-DBN模型的光伏出力日前区间预测[J]. 高电压技术, 2021, 47(4): 1156-1164. DOI: 10.13336/j.1003-6520.hve.20201406
YANG Mao, WANG Kaixuan. Day-ahead Interval Forecasting of PV Power Based on CEEMD-DBN Model[J]. High Voltage Engineering, 2021, 47(4): 1156-1164. DOI: 10.13336/j.1003-6520.hve.20201406
Citation: YANG Mao, WANG Kaixuan. Day-ahead Interval Forecasting of PV Power Based on CEEMD-DBN Model[J]. High Voltage Engineering, 2021, 47(4): 1156-1164. DOI: 10.13336/j.1003-6520.hve.20201406

基于CEEMD-DBN模型的光伏出力日前区间预测

Day-ahead Interval Forecasting of PV Power Based on CEEMD-DBN Model

  • 摘要: 光伏输出功率具有随机性和不确定性,这些特点使得建立准确的预测方法变得比较困难,而与传统的确定性点预测方法相比,光伏出力区间预测对电力系统的安全稳定运行及经济调度更为重要。为此,提出了一种基于互补集合经验模态分解(omplementary ensemble empirical mode decomposition,CEEMD)和模拟退火(simulated annealing, SA)算法优化后的深度信念网络(deep belief network,DBN)的光伏发电出力日前区间预测模型。首先,通过综合因素相似系数筛选出晴天和多云天气的相似日样本集。在此基础上,利用CEEMD将光伏出力序列分解为多个特征不同的分量。然后,使用SA-DBN和核密度估计(kernel density estimation,KDE)对光伏输出功率进行日前区间预测。最后,通过算例数据验证了所提方法的有效性。多座光伏电站的历史数据分析结果表明,所提出的模型可以较为精确地给出基于误差分布的置信区间上下限,且不受光伏电站所处地理位置的影响。

     

    Abstract: Photovoltaic (PV) output power has randomness and uncertainty, which makes it difficult to establish an accurate prediction method. However, compared with the traditional deterministic point prediction method, PV output range prediction is more important for the safe and stable operation and economic dispatching of power system. Therefore, we propose a day-ahead interval prediction model of PV power generation output based on the complementary ensemble empirical mode decomposition (CEEMD) and deep belief network (DBN) optimized by simulated annealing (SA). Firstly, the similar daily sample sets of sunny and cloudy weather are selected through the similarity coefficient of comprehensive factors. On this basis, CEEMD is used to decompose the PV output sequence into several components with different features. Then SA-DBN and kernel density estimation (KDE) are used to predict the PV output power in the day-ahead interval. Finally, the effectiveness of the proposed method is verified by the example data. The results of historical data analysis of several PV power stations show that the proposed model can give the confidence interval based on the error distribution more accurately and is not affected by the geographical location of PV power stations.

     

/

返回文章
返回