邵军康, 李鑫, 邱亚, 朱浩宇, 张里, 侯杨成. 全钒液流电池多场耦合建模研究[J]. 高电压技术, 2021, 47(5): 1881-1891. DOI: 10.13336/j.1003-6520.hve.20200664
引用本文: 邵军康, 李鑫, 邱亚, 朱浩宇, 张里, 侯杨成. 全钒液流电池多场耦合建模研究[J]. 高电压技术, 2021, 47(5): 1881-1891. DOI: 10.13336/j.1003-6520.hve.20200664
SHAO Junkang, LI Xin, QIU Ya, ZHU Haoyu, ZHANG Li, HOU Yangcheng. Multi-field Coupling Modeling of Vanadium Redox Battery[J]. High Voltage Engineering, 2021, 47(5): 1881-1891. DOI: 10.13336/j.1003-6520.hve.20200664
Citation: SHAO Junkang, LI Xin, QIU Ya, ZHU Haoyu, ZHANG Li, HOU Yangcheng. Multi-field Coupling Modeling of Vanadium Redox Battery[J]. High Voltage Engineering, 2021, 47(5): 1881-1891. DOI: 10.13336/j.1003-6520.hve.20200664

全钒液流电池多场耦合建模研究

Multi-field Coupling Modeling of Vanadium Redox Battery

  • 摘要: 为了提高全钒液流电池(vanadium redox battery,VRB)的系统效率,基于全钒液流电池的组成和工作原理,将VRB等效电路模型、流体力学模型、电化学模型和温度模型相互耦合,建立了计及温度变化的全钒液流电池混合模型。其中等效电路模型总体展现VRB的电学关系,流体力学模型、电化学模型和温度模型分别展现VRB运行过程中的动量传递过程、质量传递过程和热量传递过程,4种模型将VRB运行过程中的“三传一反”同电学关系结合,并通过Matlab/Simulink仿真分析验证了该模型的准确性。通过对计及温度变化的全钒液流电池混合模型仿真,分析温度变化、流量分配变化和VRB系统效率的耦合关系。结果表明,充放电期间的最优流量是关于荷电状态(state of charge,SOC)和温度的函数,通过仿真分析得到不同时段温度下,各SOC的最优流量值。模拟5 kW 4 h全钒液流电池储能系统选择计及温度变化的最优流量控制策略,仿真结果表明系统效率由73.7%提高至76.4%。

     

    Abstract: In order to improve the system efficiency of vanadium redox battery(VRB), based on the composition and working principle of VRB, a hybrid model of vanadium redox battery is established by coupling VRB equivalent circuit model, hydrodynamic model, electrochemical model, and temperature model. The equivalent circuit model shows the electrical relationship of VRB, the hydrodynamic model shows the momentum transfer process of VRB, the electrochemical model shows the mass transfer process of VRB, and the temperature model shows the heat transfer process of VRB. Four models combine the "three transfers and one reverse" with the electrical relationship, and the accuracy of the model is verified by Matlab/Simulink simulation comparison. Based on the hybrid model of VRB which takes into account the temperature change, the coupling relationship between temperature change, flow distribution change and VRB system efficiency is analyzed. The results show that the optimal flow rate is a function of state of charge(SOC) and temperature. The optimal flow rate of each SOC in different periods temperature is obtained by simulation analysis. The optimal flow control strategy in which the temperature change is taken into account is simulated in 5 kW 4 h VRB energy storage system. The simulation results show that the system efficiency increases from 73.7% to 76.4%.

     

/

返回文章
返回