陈继明, 许辰航, 李鹏, 邵先军, 李超林. 基于时频分析与分形理论的GIS局部放电模式识别特征提取方法[J]. 高电压技术, 2021, 47(1): 287-295. DOI: 10.13336/j.1003-6520.hve.20200507002
引用本文: 陈继明, 许辰航, 李鹏, 邵先军, 李超林. 基于时频分析与分形理论的GIS局部放电模式识别特征提取方法[J]. 高电压技术, 2021, 47(1): 287-295. DOI: 10.13336/j.1003-6520.hve.20200507002
CHEN Jiming, XU Chenhang, LI Peng, SHAO Xianjun, LI Chaolin. Feature Extraction Method for Partial Discharge Pattern in GIS Based on Time-frequency Analysis and Fractal Theory[J]. High Voltage Engineering, 2021, 47(1): 287-295. DOI: 10.13336/j.1003-6520.hve.20200507002
Citation: CHEN Jiming, XU Chenhang, LI Peng, SHAO Xianjun, LI Chaolin. Feature Extraction Method for Partial Discharge Pattern in GIS Based on Time-frequency Analysis and Fractal Theory[J]. High Voltage Engineering, 2021, 47(1): 287-295. DOI: 10.13336/j.1003-6520.hve.20200507002

基于时频分析与分形理论的GIS局部放电模式识别特征提取方法

Feature Extraction Method for Partial Discharge Pattern in GIS Based on Time-frequency Analysis and Fractal Theory

  • 摘要: 识别局部放电(PD)的缺陷类型是评估电气设备绝缘状况的一项重要指标,通过特高频传感器(UHF)可获取局部放电信号。然而,传统的基于统计参数的信号特征提取方法存在高维数和无效信息过多的缺点,该文提出了一种基于时频分析和分形理论的气体绝缘组合电气(GIS)局部放电模式识别特征提取方法。首先利用小波变换对局部放电信号获取能量的时频分布图;然后运用差分盒计数法(DBC)对能量分布图进行分形维数的特征提取,并采用线性判别分析(LDA)对特征向量进行降维处理;最后利用支持向量机(SVM)对局部放电缺陷类型进行分类。为验证所提出算法的有效性,在实验室252 kV GIS局部放电仿真实验平台的模型气室内设置了尖端放电、自由微粒放电、沿面放电和悬浮电极放电4种典型缺陷类型,由特高频传感器采集各类缺陷的局部放电信号,后由该文算法进行分类。实验结果表明,采用该文所提特征提取方法对4种典型缺陷类型的识别准确率超过96%,显著优于传统的基于统计参数的信号特征提取方法。

     

    Abstract: Partial discharge (PD) pattern recognition is a critical indicator for evaluating the insulation state of electrical equipment. PD signals can be obtained by ultra high frequency(UHF) sensor. However, traditional methods based on statistical parameters have the disadvantages of high dimension and invalid information for signal feature extraction. In this paper, we propose a feature extraction method based on time-frequency analysis and fractal theory for partial discharge pattern recognition of gas insulated switchgear (GIS). Firstly, the wavelet transform is applied to extract the energy map of time-frequency distribution of partial discharge signals. Then, the differential box counting (DBC) is used to extract the fractal dimensions features of the energy distribution map, and the linear discriminant analysis (LDA) is used to reduce the dimension of the feature vectors. Finally, the support vector machine(SVM) is employed to classify the partial discharge defects. To evaluate the effectiveness of the proposed method in this paper, four typical types of defects, namely protrusion discharge, free moving particle discharge, surface discharge, and floating electrode discharge, have been set up in the 252 kV GIS model chamber of the laboratory. Partial discharge signals have been obtained by UHF sensors and classified by the proposed method. The experimental results show that the recognition accuracy rate for all the four typical discharge types exceeds 96% by using the proposed feature extraction method, which is significantly better than the traditional methods based on statistical parameters for signal feature extraction.

     

/

返回文章
返回