毛艳, 丁玉剑, 郭贤珊, 姚修远, 付颖, 崔玉涵. ±1 100 kV PLC电抗器均压屏蔽装置的结构优化[J]. 高电压技术, 2021, 47(4): 1436-1442. DOI: 10.13336/j.1003-6520.hve.20191808
引用本文: 毛艳, 丁玉剑, 郭贤珊, 姚修远, 付颖, 崔玉涵. ±1 100 kV PLC电抗器均压屏蔽装置的结构优化[J]. 高电压技术, 2021, 47(4): 1436-1442. DOI: 10.13336/j.1003-6520.hve.20191808
MAO Yan, DING Yujian, GUO Xianshan, YAO Xiuyuan, FU Ying, CUI Yuhan. Structure Optimization of Grading and Shielding Devices for ±1 100 kV PLC Reactor[J]. High Voltage Engineering, 2021, 47(4): 1436-1442. DOI: 10.13336/j.1003-6520.hve.20191808
Citation: MAO Yan, DING Yujian, GUO Xianshan, YAO Xiuyuan, FU Ying, CUI Yuhan. Structure Optimization of Grading and Shielding Devices for ±1 100 kV PLC Reactor[J]. High Voltage Engineering, 2021, 47(4): 1436-1442. DOI: 10.13336/j.1003-6520.hve.20191808

±1 100 kV PLC电抗器均压屏蔽装置的结构优化

Structure Optimization of Grading and Shielding Devices for ±1 100 kV PLC Reactor

  • 摘要: ±1 100 kV电力载波通讯(PLC)噪声滤波器能有效滤除传导高频干扰噪声,以防对电力系统中的PLC信号造成干扰。PLC电抗器是噪声滤波器的主要设备之一,串联于噪声滤波器主回路中。为合理确定±1 100 kV PLC电抗器均压屏蔽装置的结构形式和外形尺寸,首先根据±1 100 kV PLC电抗器置的初步结构设计,通过真型产品的50%操作冲击放电特性试验和3维电场仿真理论计算,得到了PLC电抗器表面临界击穿场强值;其次,针对PLC电抗器均压屏蔽装置表面场强畸变相对严重的部位,从均压环外径、管径等方面进行研究和优化,并对比分析了实验室和实际运行环境下PLC电抗器表面场强分布情况;最后,采用250/2 500 μs标准操作波和500/5 000 μs长波头操作波,开展了±1 100 kV PLC电抗器操作冲击放电验证试验。研究结果表明,优化后的±1 100 kV PLC电抗器均压屏蔽装置满足工程实际需要,可为±1 100 kV PLC电抗器外绝缘参数设计提供技术支撑。

     

    Abstract: The ±1 100 kV power line communication(PLC) noise filter can effectively filter conduction high-frequency interference noise, so as to avoid its interference on power line carrier communication signals of the power system. The PLC reactor is one of main devices of the noise filter, which is connected in series in the main circuit of noise filter. In order to determine the structure form and dimension of grading and shielding devices of ±1 100 kV PLC reactor, firstly, according to the preliminary design dimensions, the 50% switching impulse discharge tests and 3D electric field simulation theory calculation are carried out, the value of critical breakdown field strength of ±1 100 kV PLC reactor is obtained. Secondly, aimed at the parts where the surface field distortion of the grading and shielding devices are relatively serious, the external diameter and pipe diameter are studied and optimized, and the distribution of the surface field strength of the PLC reactor in the laboratory and in the actual operation environments are compared and analyzed. Finally, the switching impulse discharge test for real ±1 100 kV PLC reactor is carried out by using 250/2 500 μs standard switching impulse and 500/5 000 μs long-front switching impulse. The results show that the optimized grading and shielding devices of ±1 100 kV PLC reactors can meet the practical needs of the project, and provide technical support for the design of external insulation parameters of ±1 100 kV PLC reactors.

     

/

返回文章
返回