张妮乐, 王化南, 温吉利. 超临界二氧化碳布雷顿循环热力分析及优化[J]. 发电设备, 2025, 39(3): 162-166,179. DOI: 10.19806/j.cnki.fdsb.2025.03.004
引用本文: 张妮乐, 王化南, 温吉利. 超临界二氧化碳布雷顿循环热力分析及优化[J]. 发电设备, 2025, 39(3): 162-166,179. DOI: 10.19806/j.cnki.fdsb.2025.03.004
ZHANG Nile, WANG Huanan, WEN Jili. Thermodynamic Analysis and Optimization of Supercritical Carbon Dioxide Brayton Cycle[J]. POWER eQUIPMENT, 2025, 39(3): 162-166,179. DOI: 10.19806/j.cnki.fdsb.2025.03.004
Citation: ZHANG Nile, WANG Huanan, WEN Jili. Thermodynamic Analysis and Optimization of Supercritical Carbon Dioxide Brayton Cycle[J]. POWER eQUIPMENT, 2025, 39(3): 162-166,179. DOI: 10.19806/j.cnki.fdsb.2025.03.004

超临界二氧化碳布雷顿循环热力分析及优化

Thermodynamic Analysis and Optimization of Supercritical Carbon Dioxide Brayton Cycle

  • 摘要: 基于典型的再压缩布雷顿循环,建立了超临界二氧化碳(sCO2)发电循环的热力学模型,并且对系统性能进行关键参数影响分析。通过遗传算法优化设计,确定系统的最高效率点及其对应的运行参数。结果表明:主压缩机入口温度和压力接近临界点、透平入口温度较高时,系统循环效率较高;在主压缩机压比增加的过程中,循环效率呈先升高后降低的趋势,存在一个最优压比。研究结果可以为sCO2发电技术的工程化应用提供技术参考。

     

    Abstract: Based on a typical recompression Brayton cycle, a thermodynamic model was established for a supercritical carbon dioxide (sCO2) power generation cycle, and analyses were conducted on the influence of key parameters on the system performance. Through design optimization by applying genetic algorithm, the maximum efficiency of system and corresponding operation parameters were obtained. Results show that, a higher system cycle efficiency can be obtained when the inlet temperature and pressure of main compressor are close to the critical point and the inlet temperature of turbine is higher. With the increase of the pressure ratio of main compressor, the cycle efficiency increases at first and then decreases, while there is an optimal pressure ratio. Research results can serve as a technical reference for the engineering application of sCO2 power generation technology.

     

/

返回文章
返回