谢攀, 何翔, 李文杰, 王轩, 王一丁. 基于热仿真的模块散热结构设计及优化[J]. 发电设备, 2023, 37(1): 41-46. DOI: 10.19806/j.cnki.fdsb.2023.01.008
引用本文: 谢攀, 何翔, 李文杰, 王轩, 王一丁. 基于热仿真的模块散热结构设计及优化[J]. 发电设备, 2023, 37(1): 41-46. DOI: 10.19806/j.cnki.fdsb.2023.01.008
Xie Pan, He Xiang, Li Wenjie, Wang Xuan, Wang Yiding. Design and Optimization of the Heat Dissipation Structure of Module Based on Thermal Simulation[J]. POWER eQUIPMENT, 2023, 37(1): 41-46. DOI: 10.19806/j.cnki.fdsb.2023.01.008
Citation: Xie Pan, He Xiang, Li Wenjie, Wang Xuan, Wang Yiding. Design and Optimization of the Heat Dissipation Structure of Module Based on Thermal Simulation[J]. POWER eQUIPMENT, 2023, 37(1): 41-46. DOI: 10.19806/j.cnki.fdsb.2023.01.008

基于热仿真的模块散热结构设计及优化

Design and Optimization of the Heat Dissipation Structure of Module Based on Thermal Simulation

  • 摘要: 以某一功率放大模块为研究对象,设计了1种常规散热结构和3种优化结构。基于热仿真技术,在相同的风机、初始条件和边界条件下,分别对4种散热结构进行数值仿真。仿真结果表明:优化模块结构可以降低模块内部的热阻和模块底面的热流密度,优化散热器结构可以提高散热器的对流传热系数。2种优化方式都可以降低热源温度,并且2种方式结合后散热效果最优。

     

    Abstract: Taking a power amplifier module as the research object, one conventional structure and three optimized structures for heat dissipation were designed. Under the condition of the same fan, the same initial, and the same boundary condition, numerical simulations were respectively conducted on the heat dissipation of the four structures based on thermal simulation technology. Simulation results show that, the heat resistance inside the module and the heat flux density at the bottom of the module both can be decreased by the optimization of the module structure, while the convective heat transfer coefficient of the radiator can be improved by the optimization of the radiator structure. Both of the above two optimization measures can reduce the heat source temperature, and the optimal effect of the heat dissipation can be obtained with the combined two measures.

     

/

返回文章
返回