杨康, 李蓝青, 李艺丰, 宋东阔, 王博仑, 陈金, 周霞, 单宇. 一种新型分布式光伏出力区间预测方法[J]. 发电技术, 2024, 45(4): 684-695.
引用本文: 杨康, 李蓝青, 李艺丰, 宋东阔, 王博仑, 陈金, 周霞, 单宇. 一种新型分布式光伏出力区间预测方法[J]. 发电技术, 2024, 45(4): 684-695.
YANG Kang, LI Lan-qing, LI Yi-feng, SONG Dong-kuo, WANG Bo-lun, CHEN Jin, ZHOU Xia, DAN Yu. A Novel Distributed Photovoltaic Output Interval Prediction Method[J]. Power Generation Technology, 2024, 45(4): 684-695.
Citation: YANG Kang, LI Lan-qing, LI Yi-feng, SONG Dong-kuo, WANG Bo-lun, CHEN Jin, ZHOU Xia, DAN Yu. A Novel Distributed Photovoltaic Output Interval Prediction Method[J]. Power Generation Technology, 2024, 45(4): 684-695.

一种新型分布式光伏出力区间预测方法

A Novel Distributed Photovoltaic Output Interval Prediction Method

  • 摘要: 【目的】分布式光伏功率预测对光伏电站运行和调度具有重要意义,针对点预测方法难以全面描绘分布式光伏功率不确定性的问题,提出了一种基于自适应噪声完备集合经验模态分解(completeensembleempiricalmode decomposition with adaptive noise,CEEMDAN)和麻雀搜索算法优化的最小二乘支持向量机(sparrow search algorithm optimizedleastsquaresupportvectormachine, SSALSSVM)分布式光伏功率区间预测模型。【方法】首先,通过CEEMDAN将光伏功率序列分解为多个模态分量,再对一次分解得到的高频非平稳分量进行二次分解;其次,采用样本熵(sample entropy,SE)将所有分量重构为趋势分量和振荡分量;然后,通过SSA-LSSVM得到2个分量的点预测值;最后,对振荡分量的点预测误差进行概率密度估计,叠加点预测值得到总体的预测区间结果。【结果】所提区间预测模型具有更高的区间覆盖率且区间平均宽度更窄。【结论】在分布式光伏功率数据处理中加入二次模态分解,再结合样本熵对其子序列进行重构,可有效降低原始预测分量的复杂程度,同时提升模型预测准确性。

     

    Abstract: Objectives Distributed photovoltaic power prediction is of great significance for the operation and scheduling of photovoltaic power plants. Point prediction methods are difficult to comprehensively describe the uncertainty of distributed photovoltaic power. This article proposed a distributed photovoltaic power interval prediction model based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) and sparrow search algorithm optimized least squares support vector machine(SSA-LSSVM). Methods Firstly, the photovoltaic sequence was broken down into multimodal components through CEEMDAN, and then the high-frequency nonstationary components obtained from the first decomposition were decomposed twice. Secondly, sample entropy(SE) was used to reconstruct all components into trend and oscillation components. Then, the point prediction values of the two components were obtained through SSA-LSSVM. Finally, the probability density estimation was performed on the point prediction error of the oscillation component, and the stacked point prediction value was used to obtain the overall prediction interval result. Results The interval prediction model proposed in this paper has higher interval coverage and narrower average interval width. Conclusions Adding secondary modal decomposition to distributed photovoltaic power data processing and combining sample entropy to reconstruct its sub-sequences can effectively reduce the complexity of the original prediction components and improve the accuracy of model prediction.

     

/

返回文章
返回