
1.国网北京市电力公司,北京市 100031
2.国网北京市电力公司电力科学研究院,北京市 100075
3.国网北京市电力公司丰台供电公司,北京市 100073
4.中国农业大学信息与电气工程学院,北京市 100083
Received:16 January 2025,
Revised:2025-03-06,
Published:01 November 2025
移动端阅览
刘音,桂媛,刘若溪等.基于雾计算负荷预测的低压无源台区故障自愈重构恢复策略[J].电力建设,2025,46(11):35-46.
LIU Yin,GUI Yuan,LIU Ruoxi,et al.Post-fault Self-healing Reconfiguration Strategy for Low-Voltage Passive Station Areas Based on Fog Computing Load Prediction[J].Electric Power Construction,2025,46(11):35-46.
刘音,桂媛,刘若溪等.基于雾计算负荷预测的低压无源台区故障自愈重构恢复策略[J].电力建设,2025,46(11):35-46. DOI: 10.12204/j.issn.1000-7229.2025.11.004.
LIU Yin,GUI Yuan,LIU Ruoxi,et al.Post-fault Self-healing Reconfiguration Strategy for Low-Voltage Passive Station Areas Based on Fog Computing Load Prediction[J].Electric Power Construction,2025,46(11):35-46. DOI: 10.12204/j.issn.1000-7229.2025.11.004.
目的
2
为提高低压台区的故障恢复智能化水平,面向低压台区故障恢复问题,提出了一种基于雾计算负荷预测的低压无源台区故障重构自愈恢复策略。
方法
2
首先,为避免网络重构引发设备过载,需要提前研判网络的负荷水平,结合低压无源台区的典型结构和雾计算通信架构的特点,设计了基于增量学习模型动态聚合的雾计算超短期负荷预测方法。该方法内嵌两个特性互补的超短期负荷预测模型,通过动态加权的方式利用实时负荷进行模型增量学习,并以故障事件触发的方式对低压负荷进行快速预测。此外,基于所提的雾计算负荷预测,提出了一种无线路参数的低压无源台区开关重构自愈恢复模型,建模为混合整数二次规划问题。
结果
2
算例仿真结果表明,所提雾计算负荷预测的平均绝对无标度误差主要受负荷突变的影响,可控制在5~40之间,相对误差处于1%~8%。
结论
2
在故障隔离后,所提策略可有效完成单相负载的转供,并在保持网络辐射运行和避免设备过载的同时,尽可能维持相间负载均衡。
Objective
2
To improve the intelligence level of fault recovery in low-voltage substations, a low-voltage passive substation post-fault self-healing strategy based on fog computing load prediction was proposed for the problem of low-voltage substation fault recovery.
Methods
2
First, to avoid equipment overload caused by network reconstruction, the load level of the network must be determined in advance. Combining the typical structure of low-voltage passive substations and the characteristics of fog computing communication architecture, a fog computing ultra-short-term load prediction method based on the dynamic aggregation of an incremental learning model was designed. This method embedded two ultrashort-term load prediction technologies with complementary characteristics. It used a real-time load for model incremental learning in a dynamic weighted manner and rapidly predicted low-voltage loads in a fault event-triggered manner. In addition, based on the proposed fog computing load prediction, a low-voltage passive substation switch reconstruction self-healing recovery model without line parameters was proposed and modeled as a mixed-integer quadratic programming problem.
Results
2
The simulation results showed that the average absolute scale-free error of the proposed fog computing load prediction was mainly affected by the load mutation that could be controlled between 5 and 40, and the relative error was between 1% and 8%.
Conclusions
2
The proposed post-fault self-healing strategy effectively completed the transfer of single-phase loads and maintained the inter-phase load balance as much as possible, while maintaining the radial network operation and avoiding equipment overload.
王浩成 , 宋厚营 , 于佳 . 新型电力系统终端通信网优化方案研究 [J]. 山东电力技术 , 2024 , 51 ( 2 ): 56 - 66 .
WANG Haocheng , SONG Houying , YU Jia . Research on optimization scheme for new power system terminal communication network [J]. Shandong Electric Power , 2024 , 51 ( 2 ): 56 - 66 .
张弘喆 , 丛伟 , 王瑞梅 , 等 . 基于Bhattacharyya系数和Pearson相关系数的交直流混联电网电压波形相似度纵联保护方法 [J]. 山东电力技术 , 2024 , 51 ( 12 ): 19 - 26 .
ZHANG Hongzhe , CONG Wei , WANG Ruimei , et al . Longitudinal protection method of AC/DC hybrid power grid for voltage wave similarity using Bhattacharyya coefficient and Pearson correlation coefficient [J]. Shandong Electric Power , 2024 , 51 ( 12 ): 19 - 26 .
袁林涛 , 孙媛媛 , 刘振 , 等 . 基于潮流变向点的配电网低压分布式光伏无功影响及优化 [J]. 山东电力技术 , 2023 , 50 ( 8 ): 11 - 19, 41 .
YUAN Lintao , SUN Yuanyuan , LIU Zhen , et al . Influence and optimization of low-voltage distributed photovoltaic reactive power in active distribution network based on the power flow reverse point [J]. Shandong Electric Power , 2023 , 50 ( 8 ): 11 - 19, 41 .
范馨予 , 黄媛 , 吴疆 , 等 . 考虑源网荷储协同优化的配电网韧性提升策略 [J]. 电力建设 , 2023 , 44 ( 4 ): 63 - 73 .
FAN Xinyu , HUANG Yuan , WU Jiang , et al . Resilience promotion strategy for distribution network considering source-network-load-storage coordination [J]. Electric Power Construction , 2023 , 44 ( 4 ): 63 - 73 .
张晓丹 . 基于深度学习的低压台区故障隔离及自愈调度方法 [J]. 电脑编程技巧与维护 , 2024 ( 2 ): 128 - 130 .
ZHANG Xiaodan . Fault isolation and self-healing scheduling method for low-voltage substation based on deep learning [J]. Computer Programming Skills & Maintenance , 2024 ( 2 ): 128 - 130 .
王长伟 , 招永锦 , 吴晗 , 等 . 考虑新型配电元件多状态可靠性模型的配电网可靠性评估 [J]. 供用电 , 2023 , 40 ( 4 ): 74 - 82 .
WANG Changwei , ZHAO Yongjin , WU Han , et al . Reliability evaluation of distribution network considering multi-state reliability model of new distribution components [J]. Distribution & Utilization , 2023 , 40 ( 4 ): 74 - 82 .
沈兴杰 , 陈沛 , 高群 , 等 . 考虑多种故障场景的柔性互联低压配电网故障恢复方法 [J]. 机械与电子 , 2024 , 42 ( 3 ): 17 - 25 .
SHEN Xingjie , CHEN Pei , GAO Qun , et al . A fault recovery method for flexible interconnected low-voltage distribution network considering multiple fault scenarios [J]. Machinery & Electronics , 2024 , 42 ( 3 ): 17 - 25 .
周燕 , 刘卫民 , 陈帆 , 等 . 不同光伏渗透率下考虑需求响应的配电网储能双层规划 [J]. 高压电器 , 2024 , 60 ( 10 ): 64 - 77 .
ZHOU Yan , LIU Weimin , CHEN Fan , et al . Bi-level planning of energy storage in distribution network considering demand response under different penetration rates of photovoltaic [J]. High Voltage Apparatus , 2024 , 60 ( 10 ): 64 - 77 .
王尚斌 , 苑丽伟 , 方莹 , 等 . 计及新能源波动的分布式储能分层控制策略 [J]. 山东电力技术 , 2024 , 51 ( 9 ): 74 - 84 .
WANG Shangbin , YUAN Liwei , FANG Ying , et al . Distributed energy storage layered control strategy considering renewable energy fluctuations [J]. Shandong Electric Power , 2024 , 51 ( 9 ): 74 - 84 .
李军 , 梁宵 , 梁嘉城 , 等 . 基于ARIMA-GM改进算法的建筑负荷预测 [J]. 电气自动化 , 2023 , 45 ( 6 ): 59 - 61 .
LI Jun , LIANG Xiao , LIANG Jiacheng , et al . Building load forecasting based on improved ARIMA-GM algorithm [J]. Electrical Automation , 2023 , 45 ( 6 ): 59 - 61 .
叶永盛 , 徐燕龙 , 李阳 , 等 . 基于相似周和模态分解的融合模型电动汽车负荷预测 [J]. 电网技术 , 2025 , 49 ( 5 ): 1910 - 1919 .
YE Yongsheng , XU Yanlong , LI Yang , et al . Electric vehicle load forecasting with fusion model based on similar weeks and mode decomposition [J]. Power System Technology , 2025 , 49 ( 5 ): 1910 - 1919 .
李丽芬 , 张近月 , 曹旺斌 , 等 . 基于双重注意力时间卷积长短期记忆网络的短期负荷预测 [J]. 系统仿真学报 , 2025 , 37 ( 8 ): 2004 - 2015 .
LI Lifen , ZHANG Jinyue , CAO Wangbin , et al . Short-term load forecasting based on dual-attention temporal convolutional long short-term memory network [J]. Journal of System Simulation , 2025 , 37 ( 8 ): 2004 - 2015 .
孟衡 , 张涛 , 王金 , 等 . 基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法 [J]. 电网技术 , 2024 , 48 ( 10 ): 4297 - 4311 .
MENG Heng , ZHANG Tao , WANG Jin , et al . Multi-node short-term power load forecasting method based on multi-scale spatiotemporal graph convolution network and Transformer [J]. Power System Technology , 2024 , 48 ( 10 ): 4297 - 4311 .
LIU Y S , LIANG Z C , LI X . Enhancing short-term power load forecasting for industrial and commercial buildings: a hybrid approach using TimeGAN, CNN, and LSTM [J]. IEEE Open Journal of the Industrial Electronics Society , 2023 , 4 : 451 - 462 .
MELGAR-GARCÍA L , GUTIÉRREZ-AVILÉS D , RUBIO-ESCUDERO C , et al . A novel distributed forecasting method based on information fusion and incremental learning for streaming time series [J]. Information Fusion , 2023 , 95 : 163 - 173 .
MASSRUR H R , FOTUHI-FIRUZABAD M , DEHGHANIAN P , et al . Fog-based hierarchical coordination of residential aggregators and household demand response with power distribution grids: part I: solution design [J]. IEEE Transactions on Power Systems , 2025 , 40 ( 1 ): 85 - 98 .
KERCKHOVE S , KOIRALA A , D’HULST R , et al . Reconfiguration to increase photovoltaic hosting capacity in low voltage distribution grids [C]// 2023 International Conference on Smart Energy Systems and Technologies (SEST) . IEEE , 2023 : 1 - 6 .
HYNDMAN R J , KOEHLER A B . Another look at measures of forecast accuracy [J]. International Journal of Forecasting , 2006 , 22 ( 4 ): 679 - 688 .
张伟骏 , 李智诚 , 陈大玮 , 等 . 配网侧分布式储能系统的随机优化配置和选址方法 [J]. 高压电器 , 2023 , 59 ( 7 ): 125 - 135 .
ZHANG Weijun , LI Zhicheng , CHEN Dawei , et al . Stochastic optimal configuration and site selection method of grid-side distributed energy storage system [J]. High Voltage Apparatus , 2023 , 59 ( 7 ): 125 - 135 .
DEKA D , KEKATOS V , CAVRARO G . Learning distribution grid topologies: a tutorial [J]. IEEE Transactions on Smart Grid , 2024 , 15 ( 1 ): 999 - 1013 .
MAHDAVI M , ALHELOU H H , GOPI P , et al . Importance of radiality constraints formulation in reconfiguration problems [J]. IEEE Systems Journal , 2023 , 17 ( 4 ): 6710 - 6723 .
PJM Interconnection . Data miner 2-five minute load forecast [DB/OL]. ( 2024-07-19 )[ 2024-12-19 ]. https://dataminer2.pjm.com/feed/very_short_load_frcst https://dataminer2.pjm.com/feed/very_short_load_frcst .
CHUPONG C , PLANGKLANG B . Incremental learning model for load forecasting without training sample [J]. Computers , Materials & Continua, 2022 , 72 ( 3 ): 5415 - 5427 .
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621