
1. 国网浙江省电力有限公司嘉兴供电公司
2. 全球能源互联网集团公司
Published:2025
移动端阅览
Siqiang He, Han Jiang, Chengfeng Wu, et al. Regional Adjustable Capacity Analysis and Synergistic Optimization Based on Air Conditioning Cluster Aggregation Model[J]. 2025, (6).
随着新型电力系统建设的加速推进,挖掘空调负荷的可调能力已成为缓解峰谷矛盾、支撑电网转型的核心议题。该文提出一种数智化赋能的空调集群分层管控架构,借助“云-边-端”三级协同机制实现集群高效调控。在该框架下,首先依据空调一阶热力学方程与一致性算法构建虚拟储能聚合模型,量化集群状态转移特性,继而通过聚合模型评估集群的可调能力。接着,建立以用能成本最优为目标,以用户舒适度与空调运行边界为约束条件的优化运行模型。最后,依托数智化赋能平台,分析了浙江省某市夏季负荷的可调能力,并基于数智化管控框架构建了契合未来高比例可再生能源的微电网。通过对该微电网的优化运行,有效降低了系统用能成本,提高了系统新能源消纳比例,为该地区的数智化用能提供高弹性、低成本的调节路径。
With the acceleration of the construction of new power systems
tapping the adjustable capacity of air conditioning loads has become a core issue to alleviate the conflict between peaks and valleys and support the transformation of power grids. In this paper
we propose a numerical intelligence-enabled air conditioning cluster hierarchical control architecture
which realizes efficient regulation and control of the cluster through the “cloud-edge-end” three-level cooperative mechanism. Under this framework
a virtual energy storage aggregation model is first constructed based on the first-order thermodynamic equations of air conditioners and the consistency algorithm to quantify the state transfer characteristics of clusters
and then the adjustable capacity of clusters is evaluated through the aggregation model; then an optimization operation model is established with the optimal cost of energy as the goal
and user comfort and air conditioner operation boundaries as the constraints; finally
relying on the Digital Intelligent Enablement Platform
a practical test is carried out in a city of Zhejiang province
as an example. Finally
relying on the Digital Intelligence Empowerment Platform
a practical test is carried out in a city in Zhejiang Province
which reduces the system energy cost and improves the proportion of new energy consumption in the system
and provides a highly flexible and low-cost regulation path for Digital Intelligent Energy Use in the region.
谭鸣骢,王玲玲,蒋传文,等.考虑负荷聚合商调节潜力的需求响应双层优化模型[J].中国电力,2022,55(10):32-44.
齐宁,程林,田立亭,等.考虑柔性负荷接入的配电网规划研究综述与展望[J].电力系统自动化,2020,44(10):193-207.
王枭,刘清,Alaa SHAKIR,等.基于多层ReLU网络的楼宇暖通空调系统能量管理策略[J].电力系统自动化,2024,48(15):84-91.
L. Ning, D. Chassin. A state-queueing model of thermostatically controlled appliances[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1666-1673.
L. Ning, D. Chassin, et al. Modeling uncertainties in aggregated thermostatically controlled loads using a State queueing model[J]. IEEE Transactions on Power Systems, 2005,20(2): 725-733.
R. Malhame, C. Chong. Electric load model synthesis by diffusion approximation of a high-order hybrid-state stochastic system[J]. IEEE Transactions on Automatic Control, 1985, 30(9): 854-860.
刘萌,梁雯,张晔,等.温控负荷群Fokker-Planck方程聚合模型的数值拉普拉斯反变换求解方法[J].电力系统保护与控制,2017,45(23):17-23.
王怡岚,童亦斌,黄梅,等.基于需求侧响应的空调负荷虚拟储能模型研究[J].电网技术,2017,41(02):394-401.
M. Song, C. Gao, J. Yang, et al. Energy storage modeling of inverter air conditioning for output optimizing of wind generation in the electricity market[J]. CSEE Journal of Power and Energy Systems, 2018, 4(3):305-315.
X. Gong, E. Castillo-Guerra, J. L. Cardenas-Barrera, et al. Robust Hierarchical Control Mechanism for Aggregated Thermostatically Controlled Loads[J].IEEE Transactions on Smart Grid, 2021, 12(1):453-467.
耿健,金玉龙,杨宇峰,等.考虑调峰辅助服务的虚拟电厂日前运行优化研究[J].山东电力技术,2024,51(12):44-52.
张世帅,陈毓春,邵雪松,等.基于居民用户调控潜力精细评估的台区侧灵活资源多目标日前优化调度[J].供用电,2022,39(09):42-50.
徐诗鸿,张宏志,林湘宁,等.近海海岛多态能源供需自洽系统日前优化调度策略[J].中国电机工程学报,2019,39(S1):15-29.
王瑞东,吴杰康,蔡志宏,等.含广义储能虚拟电厂电–气–热三阶段协同优化调度[J].电网技术,2022,46(05):1857-1868.
葛晓琳,曹旭丹,李佾玲.多虚拟电厂日前随机博弈与实时变时间尺度优化方法[J].电力自动化设备,2023,43(11):150-157.
姜婷玉,李亚平,江叶峰,等.温控负荷提供电力系统辅助服务的关键技术综述[J].电力系统自动化,2022,46(11):191-207.
李力,董密,宋冬然,等.分布式的温控负荷集群负荷跟随控制[J].中国电机工程学报,2023,43(21):8270-8282.
柴超,刘松阳,孔维康,等.考虑绿证交易的虚拟电厂运行策略优化研究[J].电力需求侧管理,2024,26(05):100-105.
谭鸣骢,王玲玲,蒋传文,等.考虑负荷聚合商调节潜力的需求响应双层优化模型[J].中国电力,2022,55(10):32-44.
齐宁,程林,田立亭,等.考虑柔性负荷接入的配电网规划研究综述与展望[J].电力系统自动化,2020,44(10):193-207.
王枭,刘清,Alaa SHAKIR,等.基于多层ReLU网络的楼宇暖通空调系统能量管理策略[J].电力系统自动化,2024,48(15):84-91.
L. Ning, D. Chassin. A state-queueing model of thermostatically controlled appliances[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1666-1673.
L. Ning, D. Chassin, et al. Modeling uncertainties in aggregated thermostatically controlled loads using a State queueing model[J]. IEEE Transactions on Power Systems, 2005,20(2): 725-733.
R. Malhame, C. Chong. Electric load model synthesis by diffusion approximation of a high-order hybrid-state stochastic system[J]. IEEE Transactions on Automatic Control, 1985, 30(9): 854-860.
刘萌,梁雯,张晔,等.温控负荷群Fokker-Planck方程聚合模型的数值拉普拉斯反变换求解方法[J].电力系统保护与控制,2017,45(23):17-23.
王怡岚,童亦斌,黄梅,等.基于需求侧响应的空调负荷虚拟储能模型研究[J].电网技术,2017,41(02):394-401.
M. Song, C. Gao, J. Yang, et al. Energy storage modeling of inverter air conditioning for output optimizing of wind generation in the electricity market[J]. CSEE Journal of Power and Energy Systems, 2018, 4(3):305-315.
X. Gong, E. Castillo-Guerra, J. L. Cardenas-Barrera, et al. Robust Hierarchical Control Mechanism for Aggregated Thermostatically Controlled Loads[J].IEEE Transactions on Smart Grid, 2021, 12(1):453-467.
耿健,金玉龙,杨宇峰,等.考虑调峰辅助服务的虚拟电厂日前运行优化研究[J].山东电力技术,2024,51(12):44-52.
张世帅,陈毓春,邵雪松,等.基于居民用户调控潜力精细评估的台区侧灵活资源多目标日前优化调度[J].供用电,2022,39(09):42-50.
徐诗鸿,张宏志,林湘宁,等.近海海岛多态能源供需自洽系统日前优化调度策略[J].中国电机工程学报,2019,39(S1):15-29.
王瑞东,吴杰康,蔡志宏,等.含广义储能虚拟电厂电–气–热三阶段协同优化调度[J].电网技术,2022,46(05):1857-1868.
葛晓琳,曹旭丹,李佾玲.多虚拟电厂日前随机博弈与实时变时间尺度优化方法[J].电力自动化设备,2023,43(11):150-157.
姜婷玉,李亚平,江叶峰,等.温控负荷提供电力系统辅助服务的关键技术综述[J].电力系统自动化,2022,46(11):191-207.
李力,董密,宋冬然,等.分布式的温控负荷集群负荷跟随控制[J].中国电机工程学报,2023,43(21):8270-8282.
柴超,刘松阳,孔维康,等.考虑绿证交易的虚拟电厂运行策略优化研究[J].电力需求侧管理,2024,26(05):100-105.
0
Views
2
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621