乔路丽, 蔺雨桐, 李静, 管宽岐, 张楠楠. 基于深度学习的绝缘子缺失检测方法研究[J]. 电网与清洁能源, 2022, 38(10): 44-50.
引用本文: 乔路丽, 蔺雨桐, 李静, 管宽岐, 张楠楠. 基于深度学习的绝缘子缺失检测方法研究[J]. 电网与清洁能源, 2022, 38(10): 44-50.
QIAO Luli, LIN Yutong, LI Jing, GUAN Kuanqi, ZHANG Nannan. Research on Insulator Loss Detection Based on Deep Learning[J]. Power system and Clean Energy, 2022, 38(10): 44-50.
Citation: QIAO Luli, LIN Yutong, LI Jing, GUAN Kuanqi, ZHANG Nannan. Research on Insulator Loss Detection Based on Deep Learning[J]. Power system and Clean Energy, 2022, 38(10): 44-50.

基于深度学习的绝缘子缺失检测方法研究

Research on Insulator Loss Detection Based on Deep Learning

  • 摘要: 绝缘子缺陷严重影响输电线路安全,航拍图像绝缘子缺失的有效识别是无人机线路巡检。提出一种轻量级网络的绝缘子缺失检测模型,使用轻量级网络MobileNetV3替换YOLOv4模型的CSPDarknet53网络。以分割性能和计算速度为判据,综合分析比较了YOLOv4模型和使用轻量型网络对其主干网络替换后的模型在绝缘子缺失检测上的性能,实验结果表明:筛选的YOLOv4-MobileNetV3轻量级网络绝缘子缺失检测模型能够准确定位图像中单、多目标绝缘子;改进后YOLOv4-MobileNetV3检测模型比原模型的体积减少了78%,FPS提升了4.85 f/s,而mAP仅降低0.6%。提出的绝缘子缺失检测方法能够满足无人机电力线路巡检的需求。

     

    Abstract: Insulator defects seriously affect the security of transmission lines,and effective identification of insulator loss in aerial images is an important link in the UAV line inspection.This paper proposes a lightweight network model for insulator loss detection,which replaces the backbone network part of YOLOv4 with a lightweight network MobileNetV3. Based on the segmentation performance and calculation speed, the performance of the YOLOv4 model and the model which replaces its trunk network with a lightweight network in the insulator loss detection are comprehensively analyzed and compared,and the test results show: the selected YoloV4-Mobilenet V3 lightweight network insulator loss detection model can accurately locate single and multiple target insulators in the image. The improved YOLOv4-MobileNetV3 detection model is78% smaller than the original model in volume,and the FPS is increased by 4.85,and the corresponding mAP is decreased by0.6%. The insulator loss detection method proposed in this study can meet the needs of the UAV power line inspection.

     

/

返回文章
返回