夏雨烁, 张新生, 王明虎. 基于ISSA-NESN的可再生能源电力需求预测研究[J]. 电网与清洁能源, 2023, 39(6): 136-143.
引用本文: 夏雨烁, 张新生, 王明虎. 基于ISSA-NESN的可再生能源电力需求预测研究[J]. 电网与清洁能源, 2023, 39(6): 136-143.
XIA Yushuo, ZHANG Xinsheng, WANG Minghu. A Study on Renewable Energy Power Demand Forecast Based on ISSA-NESN[J]. Power system and Clean Energy, 2023, 39(6): 136-143.
Citation: XIA Yushuo, ZHANG Xinsheng, WANG Minghu. A Study on Renewable Energy Power Demand Forecast Based on ISSA-NESN[J]. Power system and Clean Energy, 2023, 39(6): 136-143.

基于ISSA-NESN的可再生能源电力需求预测研究

A Study on Renewable Energy Power Demand Forecast Based on ISSA-NESN

  • 摘要: 首先将标准麻雀搜索算法SSA加入Tent混沌映射以及动态步长因子得到优化的麻雀搜索算法ISSA,以提高种群的多样性并调节种群的全局搜索能力与局部开发能力。然后,将标准回声状态网络ESN的储蓄池内部状态函数用双曲正切函数来代替得到非线性回声状态网络NESN。最后,利用优化的麻雀搜索算法ISSA对非线性回声状态网络的储蓄池稀疏度SD以及谱半径SR进行参数优化,构建ISSA-NESN预测模型。通过算例分析,ISSA-NESN的平均绝对百分比误差(MAPE)为15.84%,均方根误差(RMSE)为0.12,预测效果优于其他对比模型。

     

    Abstract: In this paper, the standard sparrow search algorithm SSA is added into Tent chaotic mapping and dynamic step factor to obtain the optimized sparrow search algorithm ISSA,so as to improve the diversity of the population and regulate the global search ability and local exploitation ability of the population. Then,the internal state function of the savings pool of the standard ESN is replaced by the hyperbolic tangent function to obtain the NESN. Finally,the sparsity SD and spectral radius SR of savings pool in nonlinear echo state network were optimized by using the optimized sparrow search algorithm ISSA,and the ISSA-NESN prediction model is built. The example analysis shows that the mean absolute percentage error(MAPE)of ISSANESN is 15.84%,and the root mean square error(RMSE)is 0.12,which is better than other comparison models.

     

/

返回文章
返回