李洪美, 李香凡, 林志芳, 朱礼元. 计及车网互动的热电联供微电网优化调度[J]. 电网与清洁能源, 2024, 40(9): 63-73.
引用本文: 李洪美, 李香凡, 林志芳, 朱礼元. 计及车网互动的热电联供微电网优化调度[J]. 电网与清洁能源, 2024, 40(9): 63-73.
LI Hongmei, LI Xiangfan, LIN Zhifang, ZHU Liyuan. Optimized Scheduling of the Combined Heat and Power Microgrid Considering Vehicle-to-Grid Interaction[J]. Power system and Clean Energy, 2024, 40(9): 63-73.
Citation: LI Hongmei, LI Xiangfan, LIN Zhifang, ZHU Liyuan. Optimized Scheduling of the Combined Heat and Power Microgrid Considering Vehicle-to-Grid Interaction[J]. Power system and Clean Energy, 2024, 40(9): 63-73.

计及车网互动的热电联供微电网优化调度

Optimized Scheduling of the Combined Heat and Power Microgrid Considering Vehicle-to-Grid Interaction

  • 摘要: 为有效推动“双碳”目标的实现,针对系统碳排放量大、综合成本高和优化调度迭代寻优困难的问题,提出了计及车网互动的热电联供微网(combined heat and power microgrid,CHP-MG)优化调度方法。以微网运行成本和碳排放量最小为目标,建立了考虑车网互动的CHP-MG模型,同时,考虑用户需求变化,设置了优先满足电负荷需求和优先满足热负荷需求2种模式;给出改进的树种优化算法,将种群划分为4部分,更有效的进行全局搜索;该算法还引入了枯萎过程和位置置换变异策略,以增加种群多样性、避免局部最优,从而提高收敛时间和寻优能力。以英格兰东北部地区为例进行了仿真验证,结果表明,改进后算法的寻优结果和收敛时间明显优于未改进的树种优化算法。

     

    Abstract: To effectively achieve the "Dual-carbon" goals,this paper proposes an optimization and scheduling method for combined heat and power microgrids(CHP-MG)considering the interaction between vehicles and the grid. To minimize the operating cost and carbon emissions of the microgrid,a CHPMG model is established,which takes into account the dynamic user demands and offers two modes: prioritizing electricity load demand and prioritizing heat load demand. Furthermore,an improved tree species optimization algorithm is proposed,where the population is divided into four parts to enhance global search efficiency. Additionally, with the introduction of withering process and position replacement mutation strategy, the algorithm enhances population diversity,avoids local optima,and improves convergence time and optimization performance.The simulation results using the case study of Northeast England demonstrate that the improved algorithm outperforms the original tree species optimization algorithm in terms of optimization results and convergence time.

     

/

返回文章
返回