A Study on Durability of the Concrete Repair Interface of the Photovoltaic Bracket in the Saline Soil Area of Northwest China
-
摘要: 在冻融、盐蚀作用下,西北盐渍土地区光伏支架基础混凝土劣化迅速。针对水泥基砂浆-混凝土界面进行耐久性试验,研究不同侵蚀作用后耐久性指标的变化规律,建立以界面抗剪强度损失率为指标的损伤度,利用扫描电镜对试件的微观结构进行分析。分析结果表明:交替作用下试件损伤最严重,其次为盐冻循环,最后为硫酸盐干湿循环,且交替作用对试件所造成的损伤为超叠加效应,其损伤度比单一侵蚀叠加结果高6.43%;相比于MgSO4溶液,Na2SO4溶液对界面劣化更为严重,交替作用6次时两者损伤程度分别为95.24%(Na2SO4)和82.41%(MgSO4);微观试验显示,在经历交替作用后,试件粘结界面扩展变宽,并有侵蚀产物生成。Abstract: Under the effects of sulfate erosion and freezethaw cycles,the concrete of photovoltaic bracket foundations in the northwest saline soil area deteriorates rapidly. This article presents interface durability tests the on cement mortarconcrete,studying the changes in durability indicators under different erosion effects,establishing a damage degree based on the loss rate of interface shear strength,and analyzing the microstructure of the specimens using scanning electron microscopy.The results show that the damage to the specimen is the most severe under alternating action,followed by salt freezing cycle and finally dry wet cycle. The damage caused by alternating action on the specimen is a superimposition effect,with a damage degree 6.43% higher than that of a single erosion superposition result. Compared to MgSO4 solution, Na2SO4solution causes more severe interface degradation,with damage levels of 95.24%(Na2SO4)and 82.41%(MgSO4)after 6 cycles of alternating action. Microscopic experiments show that after undergoing alternating effects,the bonding interface of the specimen expands and widens, and erosion products are generated.
-
Keywords:
- cement-based mortar /
- interface /
- dry wet cycle /
- salt freezing /
- alternation action
-
[1] 董明,李晓枫,杨章,等.基于数据驱动的分布式光伏发电功率预测方法研究进展[J].电网与清洁能源,2024,40(1):8-17,28. DONG Ming,LI Xiaofeng,YANG Zhang,et al. Research progress on data-driven prediction methods for distributed photovoltaic power generation[J]. Power System and Clean Energy,2024,40(1):8-17,28.
[2] 魏伟,叶利,方毅,等.考虑碳排放配额和碳交易的新能源电力系统日前优化调度[J].电网与清洁能源,2024,40(1):130-136. WEI Wei,YE Li,FANG Yi,et al. Day-ahead optimal scheduling of new energy power system considering carbon emission quota and carbon trading[J]. Power System and Clean Energy,2024,40(1):130-136.
[3] 张廷毅,汪自力,郑光和,等.碳化与硫酸盐溶液干湿循环后混凝土断裂韧度[J].水利学报,2016,47(8):1062-1069. ZHANG Tingyi,WANG Zili,ZHENG Guanghe,et al.Fracture toughness of concrete after carbonation and wetdry cycle of sulfate solution[J].Journal of Hydraulic Engineering,2016,47(8):1062-1069.
[4] 杨冬鹏,郭卫民,王宝民.基于Weibull模型的混凝土冻融损伤寿命预测及应用[J].水利学报,2022,53(8):977-983. YANG Dongpeng,GUO Weimin,WANG Baomin.Prediction and application of freezing-thawing damage life of concrete based on Weibull model[J]. Journal of Hydraulic Engineering,2022,53(8):977-983.
[5] CAO J,WU F,LEI S,et al. Experimental study on the bonding performance of engineered cementitious composites to normal concrete interface subjected to salt freeze-thaw cycles[J].Composite Structures,2024,330(15):117828.
[6] 王伯昕,刘佳奇,王清,等.冻融循环条件下粉质黏土-混凝土界面细观损伤及宏观剪切性能研究[J].岩石力学与工程学报,2023,42(增刊1):3792-3800. WANG Boxin,LIU Jiaqi,WANG Qing,et al. Study of meso-damage and macroscopic shear performance of silty clay-concrete interface under freeze-thaw cycles[J].Chinese Journal of Rock Mechanics and Engineering,2023,42(S1):3792-3800.
[7] 朱本清,余红发,巩旭,等.除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J].材料导报,2024,38(5):1-17. ZHU Benqing,YU Hongfa,GONG Xu,et al. Relationship between bond strength of concrete interface and mesomechanical properties of interface transition zone under freezing-thawing action of deicing salt[J].Materials Reports,2024,38(5):1-17.
[8] 李伟文,徐文冰,周英武,等.硫酸盐溶液干湿循环对FRP加固混凝土梁抗剪性能的劣化作用[J].北京工业大学学报,2014,40(8):1226-1231. LI Weiwen,XU Wenbing,ZHOU Yingwu,et al. Effect of sulfate solution dry-wet cycling environment on shear behavior of concrete beam externally bonded FRP[J].Journal of Beijing University of Technology,2014,40(8):1226-1231.
[9] 中华人民共和国国家能源局.水工混凝土试验规程DL/T 5150—2017[S].北京:中国电力出版社,2017. [10] 中华人民共和国住房与城乡建设部.普通混凝土长期性能和耐久性能试验方法标准GB/T 50082—2009[S].北京:中国建筑工业出版社,2010. [11] 张爱勤,贾坚,刘芝敏,等.环氧树脂对混凝土抗盐冻能力的影响研究[J].硅酸盐通报,2019,38(4):1278-1283. ZHANG Aiqin,JIA Jian,LIU Zhimin,et al. Influence of epoxy resin on salt scaling resistance of concrete[J].Bulletin of the Chinese Ceramic Society,2019,38(4):1278-1283.
[12] 靳文强,胡珈源,王琦,等.硫酸盐干湿环境下CFRP-粘土砖砌体界面性能试验[J/OL].吉林大学学报(工学版),2023:1-10[2024-05-13]. http://kns.cnki.net/kcms/detail/22.1341.T.20230327.0856.002.html.JIN Wenqiang,HU Jiayuan,WANG Qi,et al. Experiment on interfacial bonding performance between CFRP and clay brick under sulfate attack of wetting-drying cycles[J/OL]. Journal of Jilin University(Engineer-ing and Technology Edition),2023:1-10[2024-05-13]. http://kns.cnki.net/kcms/detail/22.1341.T.202303277.0856.002.html. [13] 郭凯,马浩辉,杨丰硕,等.冻融循环作用下GO-RC界面过渡区的微观力学性能[J].建筑材料学报,2020,23(1):230-238. GUO Kai,MA Haohui,YANG Fengshuo,et al. Micromechanical properties of GO-RC interface transition zone under freeze-thaw cycles[J].Journal of Building Materials,2020,23(1):230-238.
[14] 张学鹏,张戎令,杨斌,等.冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J].材料导报,2024,38(5):205-213. ZHANG Xuepeng,ZHANG Rongling,YANG Bin,et al.Research on strength evolution and prediction model of early-age concrete under the coupling action of freezethaw and sulfate corrosion[J]. Materials Reports,2024,38(5):205-213.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0