A Study on Capacity Configuration and Operation Performance of a WindHydrogen Generation System Based on the Speed Regulating Differential Mechanism
-
摘要: 差动调速型风电机组可在无需整流-逆变装置下与电网友好连接,为大规模风电并网和特大型风电装备的研制提供了新的技术途径。面向国家“双碳”需求,以提高风电消纳能力及并网运行稳定性、经济性为导向,提出了一种基于差动调速的风氢联合发电系统方案,并分析了其基本结构和调速原理,构建了关键单元的数学模型。为确保风氢联合发电的系统稳定、经济运行,在综合考虑风电出力及负荷需求等不确定性因素条件下,建立了制氢储能系统的容量优化模型;在保持高水平风能利用的条件下,完成了制氢储能系统的容量配置,并揭示了关键参数对容量配置的影响规律。搭建了所提风氢联合发电系统的仿真模型,在不同风速条件下,验证了所提方案的原理可行性及其在运行性能上的优越性。Abstract: The wind power generation system equipped with a speed regulating differential mechanism(SRDM)is able to be connected in a friendly manner to power grid without the need of partially-or fully-rated converters. The novel alternative transmission schemes can provide a new effective technical approach for not only the large-scale wind power grid-connected consumption but also the development of high-power wind generation equipment. In response to the national imperative for the carbon neutral and peak sustainability,with a primary focus on enhancing wind power integration,grid operation stability and economy,this paper presents a fundamental framework for a novel power generation system,in which a hydrogen energy storage unit is integrated into the SRDM-based wind turbine.The study encompasses an in-depth analysis of the proposed scheme’s overall architecture and speed regulation principles,alongside the development of mathematical models for critical system components. Moreover, to ensure the stable and economical operation of the proposed wind-hydrogen system,a capacity optimization model for the hydrogen storage unit is formulated,taking into account uncertainties such as wind power output and load demand. While maintaining a high level of wind energy utilization,the configuration of the hydrogen storage system is completed,shedding light on the influential patterns of key parameters on the capacity configuration results.Finally,a simulation model is constructed for the proposed scheme,through which the feasibility of the proposed concept and its superior operation performances are all verified under various wind speed conditions.
-
[1] 许洪华,邵桂萍,鄂春良,等.我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. XU Honghua,SHAO Guiping,E Chunliang,et al.Research on China’s future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491.
[2] 荆朝霞.新型电力系统下电力市场的建设及运行机制研究[J].电力工程技术,2022,41(1):1. JING Zhaoxia. Research on the construction and operation mechanism of electricity market under new power system[J]. Electric Power Engineering Technology,2022,41(1):1.
[3] 杨京渝,彭丽,罗隆福,等.计及风电消纳的风储系统跟踪计划出力控制策略[J].电力建设,2023,44(9):160-170. YANG Jingyu,PENG Li,LUO Longfu,et al. Wind storage system tracking plan output control strategy considering wind power consumption[J]. Electric Power Construction,2023,44(9):160-170.
[4] 盛四清,俞可,张文朝,等.大规模风电并网对送端系统功角稳定的影响研究[J].电力系统保护与控制,2022,50(6):82-90. SHENG Siqing,YU Ke,ZHANG Wenchao,et al. Influence of large-scale wind power grid connection on the power angle stability of the sending end system[J]. Power System Protection and Control,2022,50(6):82-90.
[5] 和萍,宫智杰,靳浩然,等.高比例可再生能源电力系统调峰问题综述[J].电力建设,2022,43(11):108-121. HE Ping,GONG Zhijie,JIN Haoran,at al. Review of peakshaving problem of electric power system with high proportion of renewable energy[J].Electric Power Construction,2022,43(11):108-121.
[6] 谈竹奎,文贤馗,杨涛,等.面向新型电力系统的双馈风力发电机并网控制策略研究[J].电力系统保护与控制,2023,1(3):181-187. TAN Zhukui,WEN Xiankui,YANG Tao,et al. A gridconnected control strategy for doubly-fed wind turbines for new power systems[J].Power System Protection and Control,2023,1(3):181-187.
[7] 尹文良,刘琳,张存山,等.含制氢储能的混合传动风电系统建模与运行特性分析[J].电力自动化设备,2020,40(10):64-70. YIN Wenliang,LIU Lin,ZHANG Cunshan,et al. Modeling and operation performance analysis of hybrid drive wind power generation system with hydrogen energy storage[J].Electric Power Automation Equipment,2020,40(10):64-70.
[8] 杨玉坤,许建中.基于超级电容储能的大容量直驱风电机组低电压穿越策略[J].电力系统保护与控制,2023,51(18):106-116. YANG Yukun,XU Jianzhong. Low voltage ride-through strategy for high-capacity direct-drive wind turbines based on supercapacitor energy storage[J]. Power System Protection and Control,2023,51(18):106-116.
[9] LIU R,YAO J,WANG X,et al. Dynamic stability analysis and improved LVRT schemes of DFIG-based wind turbines during a symmetrical fault in a weak grid[J]. IEEE Transactions on Power Electronics,2020,35(1):303-318.
[10] GUPTA A P,MITRA A,MOHAPATRA A,et al. A multimachine equivalent model of a wind farm considering LVRT characteristic and wake effect[J]. IEEE Transactions on Sustainable Energy,2022,13(3):1396-1407.
[11] RAFIEE Z,HEYDARI R,RAFIEE M,et al. Enhancement of the LVRT capability for DFIG-Based wind farms based on short-circuit capacity[J].IEEE Systems Journal,2022,16(2):3237-3248.
[12] IDAN M,LIOR D. Continuously variable speed wind turbine transmission concept and robust control[J]. Wind Engineering,2000,24(3):151-167.
[13] LIN Y,TU L,LIU H,et al. Hybrid power transmission technology in a wind turbine generation system[J]. IEEE/ASME Transactions on Mechatronics,2015,20(3):1218-1225.
[14] ZHAO X,MAIßE P. A novel power splitting drive train for variable speed wind power generators[J].Renewable Energy,2003,28(13):2001-2011.
[15] JELASKA D,PODRUG S,PERKUŠIĆM. A novel hybrid transmission for variable speed wind turbines[J].Renewable Energy,2015,83:78-84.
[16] SU R,RUI X,WU X,et al. The design and analysis of wind turbine based on differential speed regulation[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,230(2):221-229.
[17] YIN X,LI Y,LI W. Operating modes and control strategy for megawatt-scale hydro-viscous transmission-based continuously variable speed wind turbines[J].IEEE Transactions on Sustainable Energy,2015,6(4):1553-1564.
[18] 马文星,刘浩,刘春宝,等.液力调速风电机组变速恒频双模控制[J].华中科技大学学报(自然科学版),2017,45(3):105-110. MA Wenxing,LIU Hao,LIU Chunbao,et al. Dual-mode variable speed constant frequency control of wind turbines with hydrodynamic speed control[J]. J. Huazhong Univ. of Sci.&. Tech.(Natural Science Edition),2017,45(3):105-110.
[19] YIN W,WU X,RUI X. Adaptive robust backstepping control of the speed regulating differential mechanism for wind turbines[J].IEEE Transactions on Sustainable Energy,2019,10(3):1311-1318.
[20] RUI X,YIN W L,DONG Y,et al. Fractional-order sliding mode control for hybrid drive wind power generation system with disturbances in the grid[J].Wind Energy,2019,22(1):49-64.
[21] LIU Q,APPUNN R,HAMEYER K. Wind turbine with mechanical power split transmission to reduce the power electronic devices:an experimental validation[J].IEEE Transactions on Industrial Electronics,2017,64(11):8811-8820.
[22] DONG H,CHEN N,LI X,et al. Improved adaptive robust control for low voltage ride-through of front-end speed regulation wind turbine[J]. IEEE Access,2020,8:55438-55446.
[23] LI X,DONG H,LI H,et al. Optimisation control of frontend speed regulation(FESR)wind turbine based on improved NSGA-II[J]. IEEE Access,2019(7):45583-45593.
[24] YIN W L,RUI X,LIU L,et al. Operating performance analysis on wind turbines with the speed regulating differential mechanism[J].Journal of Renewable and Sustainable Energy,2018,10:063301.
[25] LI D Y,CAI W C,LI P,et al. Dynamics and control for a novel front-end speed regulation(FESR)wind turbine[J].IEEE Transactions on Power Electronics,2018,33(5):4073-4087.
[26] 文劲宇,周博,魏利屾.中国未来电力系统储电网初探[J].电力系统保护与控制,2022,50(7):1-10. WEN Jinyu,ZHOU Bo,WEI Lishen. Preliminary study on an energy storage grid for future power system in China[J].Power System Protection and Control,2022,50(7):1-10.
[27] 余鹏飞,朱继忠,熊小伏,等.基于储能的电力系统安全调控方法[J].电力系统保护与控制,2023,51(19):173-186. YU Pengfei,ZHU Jizhong,XIONG Xiaofu,et al.Regulating&control method of power system security based on battery energy storage[J].Power System Protection and Control,2023,51(19):173-186.
[28] 王镇林,陈麒宇,张雅静,等.基于混合储能减小平抑功率滞后性的风电平抑策略[J].电力建设,2023,44(9):149-159. WANG Zhenlin,CHEN Qiyu,ZHANG Yajing,et al. Windpower smoothing strategy based on hybrid energy storage to reduce smoothing power lag[J].Electric Power Construction,2023,44(9):149-159.
[29] 李建涛,李永光,朱泊旭,等.间歇式新能源消纳评估常用方法分析[J].电力工程技术,2022,41(5):85-93. LI Jiantao,LI Yongguang,ZHU Boxu,et al. Analysis of common methods for intermittent renewable energy consumption assessment[J].Electric Power Engineering Technology,2022,41(5):85-93.
[30] 马瑞,李浩,吴震宇.考虑置信水平的混合储能平抑风电波动[J].电力科学与技术学报,2022,37(1):35-40. MA Rui,LI Hao,WU Zhenyu. Wind power fluctuations suppression with hybrid energy storage considering the confidence level[J]. Journal of Eiectric Power Science and Technology,2022,37(1):35-40.
[31] 马艳霞,周静涵,董晓晶,等.计及不确定性和混合储能设备的综合能源系统多目标优化调度模型[J].电力科学与技术学报,2022,37(3):19-32. MA Yanxia,ZHOU Jinghan,DONG Xiaojing,et al. Multiobjective optimal scheduling model for multi energy system considering uncertainty and hybrid energy storage devices[J].Journal of Electric Power Science and Technology,2022,37(3):19-32.
[32] 黄福荣,许方园,刘国中,等.计及负荷需求响应的风光储氢系统容量优化配置[J].供用电,2023,40(2):45-51. HUANG Furong,XU Fangyuan,LIU Guozhong,et al.Optimal capacity allocation of wind solar hydrogen storage system considering load demand response[J].Distribution&Utilization,2023,40(2):45-51.
[33] 闫群民,穆佳豪,马永翔,等.分布式储能应用模式及优化配置综述[J].电力工程技术,2022,41(2):67-74. ZHANG Zhibo,WANG Yibo,ZHANG Zikui,et al. The application status and development of laser barrier removal technology in power grid[J].Electric Power Engineering Technology,2022,41(2):67-74.
[34] 曾一鸣,马瑜涵,吴启亮.电氢耦合典型应用场景分析及经济性评估[J].浙江电力,2023,42(9):1-8. ZENG Yiming,MA Yuhan,WU Qiliang. Application analysis and economic evaluation of typical electricityhydrogen coupling scenarios[J]. Zhejiang Electric Power,2023,42(9):1-8.
[35] 张焱,郝振波,朱振涛,等.海上风能岸上制氢的经济可行性分析[J].电力建设,2023,44(3):148-154. ZHANG Yan,HAO Zhenbo,ZHU Zhentao,et al.Economic feasibility analysis of onshore hydrogen production using offshore wind power[J]. Electric Power Construction,2023,44(3):148-154.
[36] 崔杨,安宁,付小标,等.面向高比例新能源电力系统调峰需求的储能容量配置方法综述[J].东北电力大学学报,2023,43(1):1-8. CUI Yang,AN Ning,FU Xiaobiao,et al. Overview of energy storage capacity allocation methods for highproportion new energy power system peak shaving demand[J]. Journal of Northeast Electric Power University,2023,43(1):1-8.
[37] 夏晨阳,杨子健,周娟,等.基于新型电力系统的储能技术研究[J].内蒙古电力技术,2022,40(4):3-12. XIA Chenyang,YANG Zijian,ZHOU Juan,et al. Research of energy storage technology based on new power system[J]. Inner Mongolia Electric Power,2022,40(4):3-12.
[38] 高维娜,于海青,苏文威,等.储能电站可靠性与安全性技术研究进展[J].电池,2022,52(1):110-113. GAO Weina,YU Haiqing,SU Wenwei,et al. Research progress in reliability and safety technology of energy storage power station[J]. Battery Bimonthly,2022,52(1):110-113.
[39] 吴健,吴奎华,崔灿,等.分布式新能源配电网输出线路负载诊断模型分析[J].沈阳工业大学学报,2023,45(3):259-263. WU Jian,WU Kuihua,CUI Can,et al. Analysis of load diagnostic model for output line of distributed new energy distribution network[J]. Journal of Shenyang University of Technology,2023,45(3):259-263.
[40] 王华佳,张岩,于丹文,等.储能电站接入电网电能质量评估分析[J].山东电力技术,2022,49(3):1-6. WANG Huajia,ZHANG Yan,YU Danwen,et al.Evaluation and analysis of power quality of power energy storage station connected to power grid[J].Shandong Electric Power,2022,49(3):1-6.
[41] 张继红,冀伟成.基于改进遗传算法的光伏系统储能优化配置[J].中国测试,2021,47(1):160-168. ZHANG Jihong,JI Weicheng. Optimal allocation of energy storage in photovoltaic system based on improved genetic algorithm[J]. China Measurement and Test,2021,47(1):160-168.
[42] 谢永胜,王凡,胥国毅,等.大规模可再生能源接入区域电网侧储能频率稳定控制方法研究[J].可再生能源,2022,40(2):222-229. XIE Yongsheng,WANG Fan,XU Guoyi,et al.Study on frequency stability control of grid-side energy storage w ith large-scale renewable energy integration[J].Renewable Energy Resources,2022,40(2):222-229.
[43] 曲嘉伟,朱乐为,刘泽宇,等.计及压缩空气储能的综合能源微网可靠性评估[J].东北电力大学学报,2022,42(6):8-18,105. QU Jiawei,ZHU Lewei,LIU Zeyu,et al.Reliability assessment for integrated energy microgrid system with compressed air energy storage[J].Journal of Northeast Electric Power University,2022,42(6):8-18,105.
[44] 许志军,臧鹏程,白格平,等.考虑风储联合运行系统经济性的储能配置优化[J].内蒙古电力技术,2022,40(4):47-53. XU Zhijun,ZANG Pengcheng,BAI Geping,et al. Energy storage configuration optimization considering economy of wind-storage combined operation system[J].Inner Mongolia Electric Power,2022,40(4):47-53.
[45] 李圣清,文颜烯,郑剑,等.储能型双馈风电机与SVG的无功电压联动控制策略[J].湖南电力,2022,42(3):43-48. LI Shengqing,WEN Yanxi,ZHEN Jian,et al.Linkage control strategy of energy-storage dual-feed wind unit and svg reactive voltage[J]. Hunan Electric Power,2022,42(3):43-48.
[46] FANG B,QIU W,WANG M,et al.Evaluation index system of shared energy storage market towards renewable energy accommodation scenario:a China’s Qinghai province context[J]. Global Energy Interconnection,2022,5(1):77-95
[47] 时维帅,孙欣,谢敬东,等.“双碳”目标下风氢联合系统参与现货市场的优化运行与效益分析[J].电力建设,2022,43(7):1-12. SHI Weishuai,SUN Xin,XIE Jingdong,et al. Optimal operation and benefit analysis of wind-hydrogen combined system in spot market with the double carbon goal[J].Electric Power Construction,2022,43(7):1-12.
[48] ABDELKAFI A,KRICHEN L. Energy management optimization of a hybrid power production unit based renewable energies[J].International Journal of Electrical Power&Energy Systems,2014,62:1-9.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0