吴子牛, 孟润泉, 韩肖清. 基于改进多种群遗传算法的光伏阵列多峰值MPPT研究[J]. 电网与清洁能源, 2022, 38(8): 102-109,120.
引用本文: 吴子牛, 孟润泉, 韩肖清. 基于改进多种群遗传算法的光伏阵列多峰值MPPT研究[J]. 电网与清洁能源, 2022, 38(8): 102-109,120.
WU Ziniu, MENG Runquan, HAN Xiaoqing. Research on Multi-Peak MPPT of Photovoltaic Array Based on Improved Multi-Population Genetic Algorithm[J]. Power system and Clean Energy, 2022, 38(8): 102-109,120.
Citation: WU Ziniu, MENG Runquan, HAN Xiaoqing. Research on Multi-Peak MPPT of Photovoltaic Array Based on Improved Multi-Population Genetic Algorithm[J]. Power system and Clean Energy, 2022, 38(8): 102-109,120.

基于改进多种群遗传算法的光伏阵列多峰值MPPT研究

Research on Multi-Peak MPPT of Photovoltaic Array Based on Improved Multi-Population Genetic Algorithm

  • 摘要: 光伏阵列在实际工作条件下因灰尘、受照不均匀等影响而功率输出呈现多峰特性,传统的最大功率点跟踪(maximum power point tracking,MPPT)算法不能实现全局寻优,无法精确跟踪到最大功率点。遗传算法可以有效解决多峰寻优问题,但一般遗传算法在跟踪过程中会出现早熟、准确率较低等问题,为此,提出一种多种群遗传算法(multiple population genetic algorithm,MPGA)与扰动法相结合的算法来解决此类问题。在光伏电池拓扑模型中,采用优化双二极管代替单二极管模型,并在Matlab/Simulink下进行建模仿真。结果表明:该算法可以准确快速高效地找到局部阴影条件下光伏阵列的最大功率点。

     

    Abstract: The power output of photovoltaic arrays exhibits multi-peak characteristics due to the influence of dust and uneven illumination under actual working conditions. The traditional Maximum Power Point Tracking(MPPT)algorithm cannot achieve global optimization and cannot accurately track to the maximum power point. The genetic algorithm can effectively solve the problem of multi-peak optimization,but the algorithm has problems such as premature and low accuracy in the tracking process. For this reason,a Multiple Population Genetic Algorithm(MPGA)combined with disturbance method is proposed in this paper. In the photovoltaic cell topology model,the optimized dual diode is used instead of the single diode model,and the modeling and simulation are performed under Matlab/Simulink. The results show that the algorithm can accurately,quickly and efficiently find the maximum power point of the photovoltaic array under partial shadow conditions.

     

/

返回文章
返回