黄公跃, 付婷婷, 林思远, 董佩纯, 薛冰. 用电信息采集系统电能计量数据异常识别研究[J]. 电网与清洁能源, 2023, 39(4): 25-30,46.
引用本文: 黄公跃, 付婷婷, 林思远, 董佩纯, 薛冰. 用电信息采集系统电能计量数据异常识别研究[J]. 电网与清洁能源, 2023, 39(4): 25-30,46.
HUANG Gongyue, FU Tingting, LIN Siyuan, DONG Peichun, XUE Bing. A Study on Abnormal Identification of Electric Energy Measurement Data in Electric Energy Information Acquisition System[J]. Power system and Clean Energy, 2023, 39(4): 25-30,46.
Citation: HUANG Gongyue, FU Tingting, LIN Siyuan, DONG Peichun, XUE Bing. A Study on Abnormal Identification of Electric Energy Measurement Data in Electric Energy Information Acquisition System[J]. Power system and Clean Energy, 2023, 39(4): 25-30,46.

用电信息采集系统电能计量数据异常识别研究

A Study on Abnormal Identification of Electric Energy Measurement Data in Electric Energy Information Acquisition System

  • 摘要: 针对电能计量数据识别异常问题,进行用电信息采集系统电能计量数据异常识别方法的研究。选取改进的粒子群算法优化支持向量机核函数参数,构建电能质量扰动模型,对用电信息系统采集的电能计量异常数据实施分类;利用LOF算法计算异常因子,采用飞走异常智能分析方法所确定的扰动模型来判断电能计量器示值是否异常,完成电能计量数据异常识别过程。实验结果表明:该方法对异常数据分类较为精准,识别准确率高达98.50%;检测时间较短,仅为1.121 s,均优于对比方法。说明能更好地防止发生错误判断,可有效提升电能计量数据异常判断的质量和效率。

     

    Abstract: This paper studies the method of identifying anomalies in electric energy metering data in the electricity consumption information collection system. The abnormal data in the electric energy measurement data is collected through the electricity consumption information collection system,and the improved particle swarm algorithm is selected to optimize the support vector machine kernel function parameters to construct the power quality disturbance model,and the classification of the electric energy measurement abnormal data collected is implemented. The LOF algorithm calculates the anomaly factor,and then the flyaway anomaly intelligent analysis method is used to determine the disturbance model to judge whether the indication value of the electric energy meter is abnormal,thus the abnormal identification process of the electric energy measurement data is completed. The experimental results show that the accuracy of this method for classifying abnormal data is as high as 98.50%,and its detection time is only 1.121 s,better than the comparison method,therefore it can better prevent judgment errors, and effectively improve the quality and efficiency of abnormality judgment of electric energy metering data.

     

/

返回文章
返回