欧旭鹏, 唐云, 张凯, 任涛, 王媛媛. 基于CEEMDAN-IDOA-BiLSTM的超短期风电功率预测[J]. 电网与清洁能源, 2023, 39(11): 142-150.
引用本文: 欧旭鹏, 唐云, 张凯, 任涛, 王媛媛. 基于CEEMDAN-IDOA-BiLSTM的超短期风电功率预测[J]. 电网与清洁能源, 2023, 39(11): 142-150.
OU Xupeng, TANG Yun, ZHANG Kai, REN Tao, WANG Yuanyuan. The Ultra Short Term Wind Power Prediction Based on CEEMDAN-IDOA-BiLSTM[J]. Power system and Clean Energy, 2023, 39(11): 142-150.
Citation: OU Xupeng, TANG Yun, ZHANG Kai, REN Tao, WANG Yuanyuan. The Ultra Short Term Wind Power Prediction Based on CEEMDAN-IDOA-BiLSTM[J]. Power system and Clean Energy, 2023, 39(11): 142-150.

基于CEEMDAN-IDOA-BiLSTM的超短期风电功率预测

The Ultra Short Term Wind Power Prediction Based on CEEMDAN-IDOA-BiLSTM

  • 摘要: 准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进野狗优化算法(improved dog optimization algorithm,IDOA)优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的组合模型预测超短期风电功率方法。该方法先采用CEEMDAN分解方法将原始的数据分解来降低原始数据的复杂性和不稳定性,将分解后的所有序列进行偏自相关方法分析,选出重要性较大序列作为IDOA-BiLSTM模型的输入,最后通过IDOA-BiLSTM模型进行超短期风电功率预测。采用甘肃某风电场实测数据为数据集,进行训练模型和预测分析,结果表明所提出的超短期风电功率预测模型具有较高的预测精度,具备实际应用的可行性。

     

    Abstract: The accurate and reliable wind power prediction is of great significance to power system scheduling,wind farm efficiency,and the safe and stable operation of the power grid.In order to improve the accuracy of the ultra short term wind power prediction,this paper proposes a combined model based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) and improved dog optimization algorithm(IDOA)to optimize bi-directional long and short term memory(BiLSTM)networks for predicting ultra short term wind power. In this method,the CEEMDAN decomposition is used to reduce the complexity and instability of the original data,and the partial autocorrelation is used to analyze all the decomposed series. The series with greater importance are selected as the input of the IDOA-BiLSTM model. Finally,an ultra short term wind power prediction is conducted through the IDOA-BiLSTM model. Using measured data from a wind farm in Gansu as the dataset, the training model and prediction analysis are conducted. The results show that the proposed ultra-short term wind power prediction model has high prediction accuracy and feasibility for practical application.

     

/

返回文章
返回