文章编号: 1000-3673 (2021) 11-4242-09 中图分类号: TM 721 文献标志码: A 学科代码: 470·40

计及锁相环动态特性的逆变电源 故障暂态电流解析

贾科,刘浅,杨彬,侯来运,方煜,毕天姝 (新能源电力系统国家重点实验室(华北电力大学),北京市 昌平区 102206)

Transient Fault Current Analysis of the Inverter-interfaced Renewable Energy Sources Considering the Dynamic Characteristics of the Phase-locked Loop

JIA Ke, LIU Qian, YANG Bin, HOU Laiyun, FANG Yu, BI Tianshu

(State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources (North China Electric Power University), Changping District, Beijing 102206, China)

ABSTRACT: The existing short-circuit fault analyses of the inverter-interfaced renewable energy sources (IIRESs) lack quantitative consideration for the nonlinear links of the control system during the fault transient. Thus, the analytical accuracy of the transient current cannot be guaranteed. To fully characterize the fault transient features of the IIRESs, a time-domain transient fault current analysis method for the IIRESs considering the dynamic features of the phase-locked loop (PLL) is proposed. The PLL fault transient features and the relevant influences on the dynamic characteristics of the current loop are first analyzed in detail. Then, the formal decoupling mathematical method in plural domain is utilized to deduce the transient current in dq coupling scenario caused by the static error between the PLL output and the feedforward compensation's angular frequencies. Further, by tracing points according to the time sections, the nonlinear fault current analysis issue under the PLL's dynamic features is solved. Compared with the published works, the influence mechanism of PLL nonlinear output on the transient current is revealed according to the proposed method, and the underdamped oscillation attenuation features of the transient fault current are characterized. The simulation results and the field site data verify the effectiveness and accuracy of the proposed method.

KEY WORDS: inverter-interfaced renewable energy sources; transient fault current; dynamic characteristics of PLL

摘要:现有的逆变电源交流送出侧短路故障分析研究针对暂态期间控制系统非线性控制环节的影响缺乏定量考虑,因此难以保证暂态电流的解析精度。为精确刻画逆变器故障暂态特征,提出了一种计及锁相环(phase-locked loop, PLL)输出动态特性的逆变电源故障暂态电流解析方法。首先详细分析了锁相环故障暂态特征及其对电流环动态特性的影响,其次针对 PLL 输出角频率与工频补偿角频率存在静态误差的情况,提出基于复数域形式解耦的数理方法,分析该场景导致

dq 耦合下的暂态电流。进一步基于时间断面分段描点实现 了考虑 PLL 非线性动态输出影响下的暂态电流解析。相较 于现有未考虑 PLL 动态特性的逆变电源故障暂态解析方法, 所提方法详细揭示了逆变电源故障暂态期间 PLL 非线性动 态输出对暂态电流的影响机理,刻画了逆变器故障暂态电流 的欠阻尼特征及振荡衰减特性。仿真结果与现场录波数据均 验证了所提方法的有效性及准确性。

关键词: 逆变电源; 故障暂态电流; 锁相环动态特性

DOI: 10.13335/j.1000-3673.pst.2021.0508

0 引言

鉴于逆变电源故障特征微弱,持续时间短的 特点,基于暂态波形时频信息的保护新原理受到 了极大的关注^[1-3]。故障暂态期间,倘若忽略由于 控制延时等因素造成的无控阶段,则逆变电源输 出主要处于控制响应时间尺度,各控制环节共同 决定了逆变器输出电流的时域特征,而控制系统 中非线性环节的存在,会导致逆变器的暂态输出 呈现显著的非线性特征,使得故障暂态电流分析 的难度大幅增加。然而现有逆变电源故障分析方 法侧重刻画基频稳态故障分量,未深入涉及受非 线性控制环节影响下的故障暂态,导致故障特性 分析不够全面,难以满足新能源送出侧的保护需 求。因此,亟待研究计及控制系统非线性环节影 响的逆变电源故障暂态电流解析方法。

对于逆变电源故障暂态电流分析的研究,按 故障暂态逆变器等效建模方法可以分为电磁暂态 仿真分析模型与解析分析模型。

电磁暂态仿真模型通常基于电磁仿真软件^[4-6], 通过换流设备的精细化建模,从时域波形上准确反 映故障暂态电气量的变化规律,然而仅通过仿真层 面无法获取准确的暂态电流表达式并且对于大规模 场站的研究,电磁暂态仿真存在计算量大、耗时久 的弊端^[7]。此外,通过电磁暂态仿真难以穷尽所有 的故障电流响应场景,因此清晰故障暂态电流的内 在响应机理和影响因素呈现出必要性需求,需要进 一步研究逆变电源故障电流的解析分析模型。

对于解析模型的研究,短路故障发生后通常将 逆变电源等值为恒流源^[8]或受控电流源^[9-10]模型, 此类分析方法侧重于逆变器的端口稳态输出特性, 强调逆变器输出电流与电压间的非线性问题。但是 这类模型过于简化,难以准确刻画短路电流的暂态 过渡过程。为更好揭示逆变电源的暂态电流响应机 理,根据逆变器的电流环控制单元,可以将故障后 逆变器的输出电流描述成二阶微分方程的形式,认 为*dq*坐标系下的电流均满足二阶动态响应^[11-14],通 过解析式反映故障暂态电流的时域指数衰减特征, 但是此类研究普遍对系统的线性程度提出了严格的 要求,并未深入涉及控制系统非线性环节对暂态电 流带来的影响,因此难以保证解析精度。

而针对控制系统非线性环节的研究现有文献 大多从定性分析层面入手^[15-17],指出控制系统中 锁相环坐标变换、控制器饱和等非线性环节会导 致逆变电源故障暂态具有强非线性特征,但缺乏 非线性控制环节对于逆变器暂态输出电流的影响 机理分析及定量计算。

针对目前逆变电源交流送出侧短路故障暂态 解析对 PLL 非线性暂态分析的欠缺,本文提出一 种计及 PLL 动态特性的逆变电源故障暂态电流解 析方法。其创新点体现于: 1)计及了故障暂态 PLL 输出的动态问题,基于复数域形式解耦的数 理方法,解决 PLL 坐标变换引入的 dq 轴分量耦合 下的暂态电流分析问题; 2)利用按时间断面分段描 点的方法,避免 PLL 输出动态下的复杂微积分运 算; 3)该方法最终可以形成故障后的暂态电流时域 表达式,揭示了 PLL 输出动态场景下逆变器 dq 轴故 障暂态电流的欠阻尼振荡衰减特性及其响应机理。 PSCAD/EMTDC 仿真结果验证了该方法相较于现有 未曾涉及 PLL 动态特性的逆变电源暂态电流解析方

法,其暂态电流解析精度最高可提升 15%,现场录 波数据进一步验证了所提方法的有效性。

1 电流环动态特性分析

逆变电源故障特性主要取决于故障期间的控制响应特性。对于电流环控制来说,故障期间控制器饱和与 PLL 输出动态会显著影响逆变器的故

障特性^[15],由于控制器饱和与具体的饱和边界值 设置及电压跌落程度有关,其存在的场景较为有 限,而 PLL 动态由于故障发生后电压相位的客观 变化会在故障暂态期间持续影响逆变电源输出, 因此本文主要研究锁相环动态对逆变器故障暂态 电流的影响。逆变器控制系统中, dq 轴电流的解 耦控制依赖于 PLL 的输出相角,倘若 PLL 输出相 角与补偿量存在较大误差,则 dq 轴的解耦特性将 被破坏。PLL 在受扰后的动态响应将通过坐标变 换影响到电流环的输出,从而间接改变逆变电源 的暂态故障特性。可见,PLL 的动态响应是分析 此场景下逆变电源故障暂态特性的基础。

1.1 锁相环动态特性分析

锁相环的种类众多,工作原理也存在较大差 异。本文以最为基础和常见的同步旋转坐标系锁 相 环^[18-19](synchronous-reference-frame PLL, SRF-PLL)为例进行分析,其他锁相环结构可以采 用类似的方法进行分析,图1为典型逆变型新能源 电源送出系统及其控制结构,其中 SRF-PLL 传递 函数框图如图中虚线框所示,短路故障发生处在 图中 A、B 两条母线之间。

the control structure

图 1: 中*w*PLL、*f*PLL、*θ*PLL分别表示锁相环输出 角频率、频率以及相角; *w*L 表示电流环补偿项, 下标 c 表示补偿; *u、e、i*分别表示逆变器端口输 出电压、并网点电压及并网电流,下标 a, b, c对 应三相静止坐标系下的电气量,下标 *d*, *q* 对应 *dq* 坐标系下的电气量,上标 "*"为相应的指令值; *T*_{2r/3s}为 Park 变换矩阵, *T*_{3s/2r}为反 Park 变换矩阵。

根据 PLL 工作原理,可得 SRF-PLL 传递函数:

$$e_q(k_{pPLL} + \frac{k_{iPLL}}{s}) = s\theta_{PLL}$$
(1)

式中: *k*_{pPLL}, *k*_{iPLL} 分别为锁相环的比例、积分系数; *s* 表示拉普拉斯算子。

假设故障暂态期间锁相环检测到的并网点电 压相位为*α*,而电压的真实相角为(*α*+Δ*α*),经锁相 环坐标变换后, dq 轴下的电压真实值^[20]为

$$\boldsymbol{e}_{dq} = \boldsymbol{T}_{2r/3s} [\boldsymbol{e}_{a} \quad \boldsymbol{e}_{b} \quad \boldsymbol{e}_{c}]^{\mathrm{T}}$$
(2)

本文取 *q* 轴超前 *d* 轴 90°的旋转坐标系进行分析。并网点电压矢量方向即 *d* 轴方向,因此 *d* 轴超前 a 轴的夹角为α,此时 *T*_{2r/3s}为

$$T_{2r/3s} = \frac{2}{3} \begin{bmatrix} \cos\alpha & \cos(\alpha - \frac{2}{3}\pi) & \cos(\alpha + \frac{2}{3}\pi) \\ \sin\alpha & \sin(\alpha - \frac{2}{3}\pi) & \sin(\alpha + \frac{2}{3}\pi) \end{bmatrix} (3)$$

假设对称故障下, abc 坐标系下的 PCC 点三相 电压矢量为 [$E_s \cos(\alpha + \Delta \alpha)$, $E_s \cos(\alpha + \Delta \alpha - 2\pi/3)$, $E_s \cos(\alpha + \Delta \alpha + 2\pi/3)$]^T,其中, E_s 表示并网点电压幅 值。将 $T_{2r/3s}$ 与电压矢量代入式(2),化简可得:

$$e_{da} = [E_s \cos \Delta \alpha \ E_s \sin \Delta \alpha]^{\mathrm{T}}$$
(4)

式(4)表明动态过程中, *q* 轴电压的数值与相位 误差量 sinΔ*α*成正比关系。在Δ*α*较小时,在零点处 利用泰勒公式将其展开,忽略二次及以上分量,并 对坐标变换环节实施线性变换^[20],将式(1)改写为

$$(\theta_0 - \theta_{\text{PLL}})E_s(k_{p\text{PLL}} + \frac{k_{i\text{PLL}}}{s}) = s\theta_{\text{PLL}}$$
(5)

式中: 60表示实际并网点电压相角。

复频域下相角Gul的方程为

$$\theta_{\text{PLL}}(s) = \frac{E_s(k_{p\text{PLL}}s + k_{i\text{PLL}})}{s^2 + k_{p\text{PLL}}E_ss + k_{i\text{PLL}}E_s}\theta_0(s)$$
(6)

假设系统真实相位在故障瞬间由 *a* 突变至 *b*, 即 θ₀=*a*+(*b*-*a*)ε(*t*)。由于复频域中难以直接表示该 信号,故分离 *a* 和(*b*-*a*)ε(*t*)。其中,*a* 对应稳态响 应,(*b*-*a*)ε(*t*)对应暂态响应。将两部分激励分别代 入式(6)计算复频域中的锁相环输出响应,相加后 将其变换为时域,可得^[20]:

$$\theta_{\text{PLL}}(t) = \omega_0 t + a + (b - a) \cdot \\ \{\varepsilon(t) + \frac{0.5k_{p\text{PLL}}E_s - \lambda}{2\lambda} \exp[(\lambda - 0.5k_{p\text{PLL}}E_s)t] - \\ \frac{0.5k_{p\text{PLL}}E_s + \lambda}{2\lambda} \exp[(-\lambda - 0.5k_{p\text{PLL}}E_s)t]\}$$
(7)

式中: $\lambda = [(0.5k_{pPLL}E_s)^2 - k_{PLL}E_s]^{1/2}$,锁相环输出角频 率 $\omega_{PLL}(t)$ 可由相角 $\theta_{PLL}(t)$ 对时间t求导解析出; ω_0 表 示工频角速度。可见,故障后锁相环输出由于指 数函数项的存在呈现出非线性时变特征。

1.2 电流环动态特性分析

逆变电源的控制系统往往结合主回路的稳态 电气关系设计,其中控制系统中的前馈解耦环 节,即为消除由于主回路电感而造成的 dq 轴电气 量耦合特性而引入。故障暂态期间,受到扰动后 PLL 输出将偏离稳态工频值,如式(7)所示,从而 与按照工频稳态设计的前馈补偿环节产生非线性误 差,导致电流环无法实现理想的解耦作用,而误差的存在会进一步通过坐标变换环节间接反映到电流响应上,造成逆变器输出电流的非线性特征。

逆变器暂态响应时,一般会断开电压外环^[21-22], 这时 *dq* 轴电流的响应受电流控制环影响较大,电 压环的影响可以忽略。因此,图1中仅保留电流控 制环,此时电流内环只需追踪给定的参考值,而 相应的控制电流指令值可以认为是根据低电压穿 越控制策略计算得到的一组常量^[22-24],故障后低 电压穿越期间控制电流指令^[22,25-26]:

$$\begin{cases} i_d^* = \sqrt{I_{\max}^2 - i_q^{*2}} \\ i_q^* = K(0.9 - U)I_N \end{cases}$$
(8)

式中: *I*_{max} 表示故障期间逆变器最大允许电流值, 本文取为 1.1 倍的额定电流; *I*_N 表示额定电流; *K* 表示无功电流补偿系数,本文取为 1.5; *U* 表示并 网点电压标幺值。

abc 坐标系下的逆变器端口电压方程为

$$L\frac{\mathrm{d}i_{\mathrm{abc}}}{\mathrm{d}t} = e_{\mathrm{abc}} - u_{\mathrm{abc}} - Ri_{\mathrm{abc}} \tag{9}$$

式中: *R* 和 *L* 分别为逆变器端口到并网点间的等效 电阻与电感。

对式(9)实施 abc/dq 坐标变换,等号左右两边 同时左乘矩阵 **T**_{2r/3s},其中 **T**_{2r/3s}中的相位元素即锁 相环检测到的角频率*o*_{PLL},因而可得 dq 参考坐标 系下逆变器端口电压方程为

$$\begin{cases} L\frac{\mathrm{d}i_d}{\mathrm{d}t} = e_d - u_d - Ri_d + \omega_{\mathrm{PLL}}Li_q \\ L\frac{\mathrm{d}i_q}{\mathrm{d}t} = e_q - u_q - Ri_q - \omega_{\mathrm{PLL}}Li_d \end{cases}$$
(10)

逆变电源控制系统中根据工频稳态电气关系 设计的电流内环控制响应方程如式(11)所示。

$$\begin{cases} u_d^* = -[k_p(i_d^* - i_d) + k_i \int (i_d^* - i_d) dt] + \omega_c L i_q + e_d \\ u_q^* = -[k_p(i_q^* - i_q) + k_i \int (i_q^* - i_q) dt] - \omega_c L i_d + e_q \end{cases}$$
(11)

式中: *k*_p与*k*_i分别表示电流环 PI 控制器的比例系数 与积分系数。

消去式(10)与式(11)中的逆变器端口电压,得 到关于电流的微分方程,将方程式中的积分运算 进行微分处理可以得到^[20,22]

$$\begin{cases} \frac{d^{2}i_{d}}{dt^{2}} + \frac{R+k_{p}}{L} \frac{di_{d}}{dt} + \frac{k_{i}}{L}i_{d} + \Delta\omega \frac{di_{q}}{dt} = \frac{k_{p}}{L} \frac{di_{d}^{*}}{dt} + \frac{k_{i}}{L}i_{d}^{*} \\ \frac{d^{2}i_{q}}{dt^{2}} + \frac{R+k_{p}}{L} \frac{di_{q}}{dt} + \frac{k_{i}}{L}i_{q}^{*} - \Delta\omega \frac{di_{d}}{dt} = \frac{k_{p}}{L} \frac{di_{q}^{*}}{dt} + \frac{k_{i}}{L}i_{q}^{*} \\ \vec{x}$$
中: $\Delta\omega = \omega_{c} - \omega_{PLL}$ 表示控制系统补偿项与实际电 气耦合项的角频率误差。

传统的逆变电源故障暂态电流解析方法^[11-14] 认为 *dq* 轴电流满足独立的二阶动态响应,其本质 上未计及故障暂态由于锁相环动态特性而引入的 非线性误差,从而忽略了故障暂态 *dq* 轴电流的耦 合问题,即认为式(12)中的Δ*ω*=0,将该条件代入 式(12)并进行求解可以得到传统方法的电流表达式:

 $i_{\varphi}(t) = C_{\varphi 0} + C_{\varphi 1} e^{-t/\tau_1} + C_{\varphi 2} e^{-t/\tau_2}$ (13) 式中: $\varphi = d$ 、q; $C_{\varphi 0}$ 、 $C_{\varphi 1}$ 、 $C_{\varphi 2}$ 可由故障发生时刻 dq轴电流初值及其导数初值求得; 衰减时间常数 满足: $1/\tau_1 = k_0/L$, $1/\tau_2 = R/L$ 。

将式(10)与式(11)所包含的物理量关系绘制于 同一幅框图中,如图2所示。

图 2 考虑坐标变换动态过程的电流框图 Fig. 2 Current block diagram considering the dynamic process of the coordinate transformation

图 2 中实线部分对应逆变电源控制系统中的电流环设计方程,虚线部分对应逆变器输出电压方程。实线框中的 ac 在逆变电源控制系统中通常取为工频 ao, 由于 PLL 在故障暂态期间会受扰动影响, apll 不再继续保持工频值,因此补偿项 aLiq 与耦合项 apll 不再继续保持工频值,因此补偿项 aLiq 与耦合项 apll Liq不再严格相等,导致式(12)所示的二阶电流微分方程组中的 dq 轴电流分量无法完全解耦。而计及 PLL 输出 apll 与工频补偿量 ac 非线性误差影响下的逆变器输出电流即二维二阶变系数微分方程组式(12)的解,此时由于复频域中 dq 轴电流表达式 Id(s)、Iq(s)包含有难以化简的时域积分项,不再满足齐次性和可加性,因此逆变器输出呈现出显著的非线性特征,从而说明锁相环坐标变换环节是影响逆变器故障暂态输出的非线性环节^[15]。

2 锁相环输出角频率与工频补偿角频率存 在误差时的暂态电流响应

2.1 静态误差影响下的故障特性分析

根据 1.2 节的分析,故障暂态期间,由于如 式(12)所示 dq 坐标系下电流的耦合特征,此时原 本稳态解耦前提下的一维暂态电流微分方程将变 为复杂的二维问题,这将大幅增加电流的解析难 度。此外,倘若 PLL 输出存在动态调节过程,则 微分方程将进一步演化为变系数方程,使得求解 过程更为复杂。本节的讨论先假定故障暂态期间 PLL 的输出频率不为工频,且不发生变化,相当 于 PLL 输出与工频量仅存在静态误差,即Δ*α*=常 数,此时式(12)将退化为二维二阶常系数微分方程 组。其实际动态过程可以视为若干离散时间点上电流 值的动态变化,相关的分析将在下一节中展开^[20]。

直接求解二阶常系数微分方程可以采用数值 分析方法,然而数值法无法得到通用的解析表达 式,从而不便于故障特性的分析。而常用的解析 方法包含状态变量法与复频域法。前者通过增加 用来替代一阶导数的变量数量来降低微分方程的 阶数,由此可以将式(12)转变为一组包含4个方程 的一阶微分方程组,再利用矩阵特征值和特征向 量来表示通用解析解。然而由于微分方程中的系 数包含了大量参变量,使得含变量的4阶行列式难 以解析表示,因此无法得到一般性的解析结果。 对于复频域法即在复频域中求解方程,再将电流 的复频域解反变换到时域。在对式(12)的求解中发 现,电流复频域解无有效极点,因此难以通过因 式分解反变换到时域,该方法也无法适用^[20]。

针对 dq 轴电流分量耦合下电流微分方程难以解 析的问题,本节提出一种将电流微分方程组式(12) 转变到复数域进行数学方程形式解耦的求解方法。

为便于后续的推导过程,将式(12)简化为

 $\int x_1'' + A_1 x_1' + A_2 x_1 + A_3 x_2' = A_4$ (14-1)

 $\int x_2'' + A_1 x_2' + A_2 x_2 - A_3 x_1' = A_5$ (14-2)

式中: x_1 、 x_2 分别表示 i_a 、 i_q ; 系数 A_1 、 A_2 、 A_3 、 A_4 、 A_5 分别与式(12)中的系数相对应,均为由控制 参数决定的常数。

由于方程式(14-1)(14-2)在形式上具有高度相 似性,可以采用方程间的运算从数学层面上消去 *x*₁与*x*₂的耦合。将*m*倍的式(14-1)与*n*倍的式(14-2) 相加,得到:

 $(mx_1 + nx_2)'' + [(A_1m - A_3n)x_1 + (A_1n + A_3m)x_2]' +$

$$(A_2mx_1 + A_2nx_2) = A_4m + A_5n \tag{15}$$

对于任意的 $x_1 = x_2$,要想构造新的变量实现方 程组式(14)形式上的解耦,则式(15)需满足必要条 件: $m/n=(A_1m-A_3n)/(A_1m+A_3n)=A_2m/(A_2n)$ 。考虑到 交流电流相量 $\dot{I} = i_d + j_i_q$,因此令m=1,可解得 $n=\pm j(j$ 为虚数单位)。于是,引入新变量 $\dot{y}_1 = x_1 + j_{x_2}$ 与 $\dot{y}_2 = x_1 - j_{x_2}$,则式(14)可改写为

$$\begin{cases} \dot{y}_{1}'' + (A_{1} - jA_{3})\dot{y}_{1}' + A_{2}\dot{y}_{1} = A_{4} + jA_{5} & (16-1) \\ \dot{y}_{2}'' + (A_{1} + jA_{3})\dot{y}_{2}' + A_{2}\dot{y}_{2} = A_{4} - jA_{5} & (16-2) \end{cases}$$

根据求解二阶常系数微分方程的通用解法, 可以得到 \dot{y}_1 及 \dot{y}_2 的解析表达式。对于 x_1 与 x_2 的求 解仅需对 \dot{y}_1 或 \dot{y}_2 中的任意一项进行求解即可。以 对 \dot{y}_1 进行求解为例,将 \dot{y}_1 用指数 $e^{(\alpha+j\beta)t+(\lambda_1+j\mu_1)}$, $e^{(\mu+j\delta)t+(\lambda_2+j\mu_2)}$, $e^{(\rho+j\beta)}$ 表示。其中, $\rho+j\xi=\ln[(A_4+jA_5)/A_2]$,其他项可以类似地写出。结合 $[x_1 \ x_2]^T$ 与 $[\dot{y}_1 \ \dot{y}_2]^T$ 间的线性关系,可求得 x_1 与 x_2 即dq轴电 流 $i_d(t)$ 与 $i_q(t)$ 的时域解析表达式:

$$\begin{cases} i_d(t) = x_1 = e^{\alpha t + \lambda_1} \cos(\beta t + \mu_1) + e^{\gamma t + \lambda_2} \cos(\delta t + \mu_2) + e^{\rho} \cos \xi \\ i_q(t) = x_2 = e^{\alpha t + \lambda_1} \sin(\beta t + \mu_1) + e^{\gamma t + \lambda_2} \sin(\delta t + \mu_2) + e^{\rho} \sin \xi \end{cases}$$
(17)

通过以上基于方程线性变换的复数域解法, 即可解得 dq 轴耦合下的逆变器输出电流,实现方 程数学形式上的解耦表达。根据式(17), dq 坐标系 下的输出电流由 3 部分构成: 2 组衰减的指数函数 与三角函数的乘积,对应故障后不断振荡衰减 (2 组衰减时间常数不同)的直流自由分量。需要注 意的是, dq 轴对应分量的衰减时间常数相等,即 暂态过程中以同一规律和速度衰减;此外,输出 电流中还有1组常数分量,对应故障后的直流强制 分量。由于 ρ 、*č*均同时由 i_d^* 、 i_q^* 导出,故对于 d 轴 输出电流,其强制分量不光由 d 轴电流指令决定, 也受 q 轴电流指令的影响。类似地, q 轴输出电流 也存在这一性质^[20]。

对比式(13)与式(17)可以发现,考虑锁相环影 响时,逆变器暂态电流表现出过调特征,即具有 欠阻尼特性,从而说明锁相环对于故障电流的阻 尼起到了比较显著的影响作用。由于 *dq* 轴电流的 阻尼振荡角频率由控制环节参数决定(如式(7)所 示,一般不是工频),因此通过坐标变换后得到的 故障暂态相电流将呈现非工频衰减的正弦波与非工 频正弦波叠加的特性。需要说明的是,PLL 输出与 工频量存在静态误差情况下的电流表达式(17)也同 样适用于不考虑 PLL 动态特性时的输出电流解 析,此时Δ*ω=ω*-*ω*PLL=0,式(14)中的*A*₃项变为0, 式(17)也相应退化为不含 PLL 误差的暂态电流解析 结果即式(13)。

2.2 非线性动态误差影响下的故障特性分析

式(7)表明受到扰动后,锁相环输出的相角和 频率存在暂态过渡过程,因而此时电流微分方程组 式(12)变为变系数微分方程组。其中,变化的系数 为 $\Delta \alpha(t)=[\alpha_c-\alpha_{PLL}(t)]$,采用2.1节中的处理方法,可 以消除 dq分量间的耦合,从而将式(12)变形^[20]为 y'' + p(t)y' + qy = 0 (18) 式中: p(t)中包含求导后形如 $h_1e^{h^2t}$ 的指数函数项; h_1 、 h_2 为任意常数。

对于一些满足特定条件的二阶变系数微分方程,利用数学上所提出的直接求解法,可求得式(18)的通解^[20]为

$$y = y_{a} [C_{a} + C_{b} \int \frac{1}{y_{a}^{2}} e^{-\int p(t)dt} dt]$$
(19)

式中: ya为方程的一个特解; Ca、Cb为任意常数。

由于 *p*(*t*)中包含指数函数,则式(19)中将出现 如∫{exp[-exp(*t*)]}d*t* 这种形式的超越积分。目前, 数学上求解这类方程采用的解析方法为幂级数展 开法,其结果无法用含有限分量的解析表达式表 示,故难以应用于一般性的故障暂态分析当中^[20]。

为有效求解适用于逆变电源故障分析的变系数 微分方程,使用近似的思想,考虑到逆变器故障暂 态响应时间通常在几十毫秒内^[23,27],采用按时间断 面分段描点处理的方法。将故障暂态[t_0 , t]划分为 n段,即[t_0 , t_1], [t_1 , t_2], ..., [t_{n-1} , t],其中 t_0 表示 故障发生时刻。并取每一段起始时刻 t_1 的角频率误 差[α - α PLL(t_1)]代入式(17)计算 t_1 时刻的电流值,其 中l=0,1,2...n-1。此时,每一个时间点 t_1 在 PLL 输出 与工频量存在动态误差情况下的电流值都相当于从 故障时刻 t_0 开始,保持静态误差 $\Delta \omega$ =[α - ω PLL(t_1)]并 在该时间点 t_1 根据式(17)得到的电流值。即考虑 PLL 动态调节情况下的故障特性分析将与 2.1 节中仅考 虑静态误差情况下的分析相类似,因而求解方法也 相同,其具体计算流程如图 3 所示。

由于逆变器自身故障暂态时长的限制,无论 是按照每毫秒对故障暂态进行分段还是更长或更 短的时间间隔进行分段,对于人工计算和计算机 求解,都是可接受的,但是越短的时间段划分会 更加准确地从时间尺度上反映 PLL 输出角频率与 工频角频率存在非线性动态误差时的暂态电流变 化规律。

3 仿真验证与结果分析

为验证上述故障暂态电流解析方法的有效性,在 PSCAD/EMTDC 平台中搭建如图 1 所示的 逆变电源模型。逆变器的控制采用 d 轴电压定向方 式,控制目标为式(8)。逆变器相关参数如附录 A 表 A1 所示,线路和变压器阻抗等其他参数如附 录 A 表 A2 所示^[20]。

在图 1 所示拓扑的线路上设置永久性 ABC 三 相短路故障,故障发生在 0s 时刻。故障发生后并 网点电压跌落至正常电压值的 25%左右。根据低 电压穿越要求,此时逆变电源需要输出无功电流 以支撑网络电压。仿真过程中,根据式(8),故障 发生后 d 轴电流指令由 1.075kA 减小至 0.535kA, q 轴电流指令由 0 增大到 1.054kA^[23-27]。

3.1 不计 PLL 暂态时的解析结果验证

PLL 动态会影响故障暂态下 dq 坐标变换的准确性,故障暂态期间以 PLL 输出相角为基础的 dq 坐标系旋转角速度不再为工频角速度,由此导致 按工频稳态电气量关系设计的控制系统补偿项无 法奏效,使得 dq 轴电气量存在耦合,该现象反映 于式(12)中。如果控制系统前馈补偿项以 PLL 输出 角频率 opll 设计,则 dq 轴分量在故障暂态期间依 旧可以有效解耦。但这个优点是否足以使该方法 应用于实际控制系统不在本文讨论的范围内,以 下仅采用这种方法来验证式(17)的合理性^[20]。

此时,将图2中黑色线框中的补偿项ωL设置 为ω_{PLL}L,式(12)发生退化,Δω项变为0,根据 式(17)得到不计锁相环输出角频率与工频补偿角频 率存在误差下的暂态电流解析式为

 $\begin{cases} i_d = 0.541 e^{-200.0t} + 0.001 e^{-0.267t} + 0.535\\ i_a = -1.054 e^{-200.0t} + 0.000 e^{-0.267t} + 1.054 \end{cases}$ (20)

将式(20)所得电流与 PSCAD 仿真得到的输出 电流绘制于图 4 中(三相电流以 A 相为例)。

图4中所提方法计算结果与仿真值吻合较好, 从而验证了式(17)也同样适用于不考虑 PLL 动态特 性时的故障暂态电流解析。

3.2 静态误差影响下的解析结果验证3.1 节的分析仅取了一种极特殊的情况,为使

仿真验证具有一般性,取 PLL 输出与工频量存在 静态误差的情况进行仿真。仿真中将补偿项ωL 的 角频率ω 强制设为[*ω*_{PLL}+Δ*ω*=*ω*_{PLL}+2π×15rad·s⁻¹], 根据式(17)得到输出电流表达式为

 $\begin{cases} i_d = 0.696e^{-200.0t}\cos(94.35t - 1.232) + \\ 0.504e^{-0.218t}\cos(0.103t - 0.912) + 0.535 \\ i_q = -0.696e^{-200.0t}\sin(94.35t - 1.232) + \\ 0.504e^{-0.218t}\sin(0.103t - 0.912) + 1.054 \end{cases}$ (21)

将 PSCAD 仿真所得输出电流、式(21)所得结 果和通过式(13)即传统方法^[11-14]得到的输出电流共 同绘制于图 5 中(三相电流以 A 相为例)。

Fig. 5 *dq*-axis current under the static error 根据图 5,无论是 *dq* 轴电流还是 A 相电流,传

统方法所得结果均与仿真结果存在较大误差,这 是由于传统方法在分析过程中并未计及 PLL 暂态输 出的影响。而根据本文所提方法解析结果即式(19) 可以看出由于三角函数项的影响,图 5 中星形线存 在着阻尼振荡过程,这与仿真结果所对应的曲线高 度吻合,印证了本文所提解析方法的可行性与准确 性。对比图4和图5,由于Δ*ω*的不同取值,2种情况 下输出电流最显著的差异在于阻尼的不同。

3.3 非线性动态误差影响下的解析结果验证 在 3.2 节的基础上进一步考虑仿真的一般性, 采用实际控制系统中通常使用的前馈补偿项 *a*_c*L*=*a*₀*L*,按 2.2 节中所提的按时间断面分段描点 的方法,此处取每段时间间隔为4ms,计算出每个 等时间间隔起始时刻的离散电流值,并在时域进 行描点,结果如图 6(a)(b)所示。作为对比,在同 一图像中绘制 PSCAD 中的 *dq* 轴电流仿真值以及传 统方法^[11-14]所得电流波形。可以看出本文所提方 法可以准确反映故障后输出电流的变化规律,并 且所计算出来的数值远比不考虑 PLL 动态响应影 响的传统方法精确得多。

为进一步量化分析本文所提解析方法的计算 效果,对故障后 80ms 内仿真值与传统方法计算值 误差,仿真值与本文所提方法计算值误差进行分 析。为合理描述暂态电流波形的刻画精度,分别 取故障后 20 个离散时刻(kms, k=4, 8...80)计算各 电 流 量 的 瞬 时 误 差 ,误差 计 算 公 式 为 : $\sigma_{kq}=|i_{Simq}(k)-i_{Cal}q(k)|/|i_{facq}(k)|$,其中, σ_k 为瞬时误 差, i_{Sim} 为电流仿真值, i_{Cal} 为电流计算值, i_{fac} 为故 障稳态电流值,误差计算结果如图 6(c)(d)所示。

根据图 6(c)(d),对 20 个时刻的瞬时电流误差 求均值得到相应的平均电流误差。传统方法与所 提方法的 d 轴电流平均误差分别为:19.93%, 4.58%; q 轴电流平均误差分别为:7.57%, 2.14%。对比传统方法,所提方法的 dq 轴电流平均 误差分别降低了 15.35%和 5.43%,并且在每一个 瞬时时刻上所提方法电流误差均小于传统方法电 流误差。由此可见,所提方法可以提高 PLL 输出 角频率与工频补偿角频率存在非线性动态误差时 的暂态电流解析精度。若想进一步改善算法的计 算精度,可以从数学角度寻找解析求解式(18)的方 法,以提高本文所提解析思路的准确性。

为验证所提方法在不对称故障条件下的有效

性。在图 1 所示拓扑的线路上设置永久性 BC 两相 相间短路故障,故障发生在 0s 时刻。故障发生后 并网点正序电压跌落至正常电压值的 40%左右。 由于按时间断面分段描点的方法严格以 2.1 节复数 域形式解耦的解析方法作为基础,此处考虑不对称 故障仿真条件下将补偿项αL 的角频率α。强制设为 [*ω*PLL+Δ*α*=*ω*PLL+2π×15rad·s⁻¹],即PLL 输出与工频 量存在静态误差的情况,以此验证不对称故障下 所提解析算法的适用性。

根据图7,不对称故障下dq轴电流受谐波影响 较为严重,传统方法所得曲线与仿真中得到的实 际电流波形差异较大,而所提方法对应的曲线与 仿真结果吻合较好,验证了所提方法同样适用于 不对称故障工况下的暂态电流解析。

4 录波数据验证

为进一步验证所提解析方法的正确性,在新 疆的一个风光混合电站进行了现场短路试验。该 站拓扑如图 8 所示。从 220kV 汇集母线处延伸出 3 条 110kV 线路(相应变压器未画出)。图中左、中 两侧为与风电场相连的分支,右侧为光伏电站分 支。110kV 支路通过降压变与 35kV 母线相连,再 通过多条线路延伸至风力发电机组或光伏电站。 通过在 2 号变 110kV 侧的输电线路上设置三相短路 故障,进行人工短路试验。以"风线 1"测点为例 对本文所提解析方法进行验证。风线 1 所连接的风 电机组及相关线路参数如附录 A 表 A3 所示。

幅值为 29.78kV(近似为额定值),故障后跌落至 14.15kV。再提取测量电压的相位与频率并进行绘 制,如图 9(b)所示,故障期间的频率波动范围为 47~54Hz。随后,根据所测电压和获得的系统及风 电场参数,采用本文方法计算出该场景下的故障 电流理论值。最后将计算所得电流与实测电流进 行比较,验证所提解析方法的实用价值。

根据附录A表A3的参数,取每4ms为一时间 间隔,根据图3所示流程计算出 dq 坐标系下的离 散电流值。进一步结合相角数据,将其变换到 abc 坐标系下并进行描点处理。将计算所得电流与实 测电流统一绘制于图10中。如图10所示,计算值 与实测值吻合较好,从而验证了利用本文所提分 析方法解析 PLL 动态特性影响下故障暂态电流时 的有效性。

measured three-phase currents

需要说明的是,实际现场中受控制延时等因 素的影响,故障发生后系统将会出现短暂的不控 阶段^[3],如图10中的阶段1所示(5~10ms),此阶段 特征主要受故障发生瞬间电压波形运行点、系统 参数、滤波器参数的影响^[25],但此时逆变器还未 切换到相应的故障控制。本文所提方法是在故障 发生后,逆变器切换到相应故障控制策略的基础 上,进一步考虑锁相环动态特性对于故障暂态电 流的影响,而阶段1的时间尺度超出了控制响应的 范围,并不属于本文所研究的范畴,因此并未计 算其相应的电流值。而该阶段过后的阶段 2(15~40ms)属于控制响应决定的故障暂态阶段,此 时受锁相环动态特性的影响,逆变器输出将呈现 出显著的非线性特征。而控制响应暂态阶段过后 的阶段 3(40ms之后)表示系统已达到新的稳态,此 阶段的特征主要由控制策略的指令值决定。

5 结论

本文深入研究了锁相环非线性动态输出对逆变 电源暂态特性的影响机理,推导并分析了计及锁相 环动态特性影响的故障暂态电流,结论如下:

1)故障暂态期间锁相环的动态输出会引起 dq 轴电流发生耦合,导致现有解析研究无法反映实 际暂态过程,从而无法保证解析精度。

2) 针对 PLL 输出角频率与前馈工频补偿角频 率存在静态误差的场景,本文基于复数域线性变 换原理实现 dq 轴电流的解耦表达,详细反映出逆 变器输出在故障暂态过渡过程中的欠阻尼特性。

3) 对于实际 PLL 非线性动态输出的场景,按时间断面分段描点实现离散时间点上暂态电流的解 析表达,解决非线性故障分析问题。仿真数据与现 场录波数据均验证了所提解析方法的有效性。

限于篇幅,对于控制器饱和等其他控制系统非 线性环节影响下的故障暂态分析将在后续工作中 进一步展开。

附录见本刊网络版(http://www.dwjs.com.cn/CN/1000-3673/current.shtml)。

参考文献

- 宋国兵,王晨清,唐吉斯,等.适用于风电接入系统的时域模型 识别纵联保护新原理[J].电网技术,2016,40(11):3580-3585.
 SONG Guobing, WANG Chenqing, TANG Jisi, et al. Novel pilot protection based on time-domain model identification for wind power integration[J]. Power System Technology, 2016,40(11):3580-3585(in Chinese).
- [2] 戎子睿,金能,林湘宁,等.基于 Hausdorff 距离的自适应母线保 护新原理[J].电网技术,2021,45(1):312-321.
 RONG Zirui, JIN Neng, LIN Xiangning, et al. A novel criterion of adaptive busbar protection based on Hausdorff distance algorithm[J].
 Power System Technology, 2021, 45(1): 312-321(in Chinese).
- [3] 贾科,杨哲,赵其娟,等.适用于新能源场站送出线路的高频突变量距离保护[J].电网技术,2019,43(9):3271-3279.
 JIA Ke, YANG Zhe, ZHAO Qijuan, et al. High-frequency fault component based distance protection for transmission lines connected to renewable energy power plants[J]. Power System Technology, 2019, 43(9): 3271-3279(in Chinese).
- [4] 李彦宾,贾科,毕天姝,等.逆变型电源对故障分量方向元件的

影响机理研究[J]. 电网技术, 2017, 41(10): 3230-3236. LI Yanbin, JIA Ke, BI Tianshu, et al. Influence mechanism of inverter-interfaced renewable energy generators on fault component based directional relay[J]. Power System Technology, 2017, 41(10): 3230-3236(in Chinese).

- [5] 林思齐,熊永新,姚伟,等.基于 MATLAB/Simulink 的新一代电 力系统动态仿真工具箱[J]. 电网技术, 2020, 44(11): 4077-4087. LIN Siqi , XIONG Yongxin , YAO Wei , et al . MATLAB/Simulink-based dynamic simulation toolbox for new generation power system[J]. Power System Technology, 2020, 44(11): 4077-4087(in Chinese).
- [6] NZIMAKO O, WIERCKX R. Modeling and simulation of a grid-integrated photovoltaic system using a real-time digital simulator[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 1326-1336.
- [7] CHINIFOROOSH S, JATSKEVICH J, YAZDANI A, et al. Definitions and applications of dynamic average models for analysis of power systems[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2655-2669.
- [8] WANG Qianggang, ZHOU Niancheng, YE Ling. Fault analysis for distribution networks with current-controlled three-phase inverter-interfaced distributed generators[J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1532-1542.
- [9] 洪树斌,范春菊,陈实,等. PQ 控制策略下多逆变型电源的故障 等值方法[J]. 电网技术, 2018, 42(4): 1101-1109. HONG Shubin, FAN Chunju, CHEN Shi, et al. Research on fault equivalence method for multiple inverter-interfaced distributed generation based on PQ control strategy[J]. Power System Technology, 2018, 42(4): 1101-1109(in Chinese).
- [10] KIM I. Short-circuit analysis models for unbalanced inverter-based distributed generation sources and loads[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3515-3526.
- [11] SHUAI Zhikang, SHEN Chao, YIN Xin, et al. Fault analysis of inverter-interfaced distributed generators with different control schemes[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1223-1235.
- [12] 常仲学,杨忠礼,宋国兵,等.正负双序独立控制策略下的逆变 型分布式电源不对称故障电流分析[J]. 电力自动化设备, 2018, 38(1): 44-51. CHANG Zhongxue, YANG Zhongli, SONG Guobing, et al. Analysis on asymmetric fault current characteristics of inverter interfaced

distributed generator under positive-sequence and negative-sequence current respective control strategy[J]. Electric Power Automation Equipment, 2018, 38(1): 44-51(in Chinese).

- [13] 匡晓云,方煜,关红兵,等.适用于含新能源逆变电源网络的全 时域短路电流计算方法[J]. 电力自动化设备, 2020, 40(5): 113-120. KUANG Xiaoyun, FANG Yu, GUAN Hongbing, et al. Full-time domain short circuit current calculation method suitable for power network with inverter-interfaced renewable energy source[J]. Electric Power Automation Equipment, 2020, 40(5): 113-120(in Chinese).
- [14] 郑黎明, 贾科, 毕天姝, 等. 基于结构相似度与平方误差的新能 源场站送出线路纵联保护综合判据[J]. 电网技术, 2020, 44(5): 1788-1795.

ZHENG Liming, JIA Ke, BI Tianshu, et al. Comprehensive criteria of pilot protection based on structural similarity and square error for outgoing line from renewable power plants[J]. Power System Technology, 2020, 44(5): 1788-1795(in Chinese).

[15] 胡家兵,袁小明,程时杰.电力电子并网装备多尺度切换控制与 电力电子化电力系统多尺度暂态问题[J]. 中国电机工程学报, 2019, 39(18): 5457-5467. HU Jiabing, YUAN Xiaoming, CHENG Shijie. Multi-time scale

transients in power-electronized power systems considering multi-time scale switching control schemes of power electronics apparatus[J]. Proceedings of the CSEE, 2019, 39(18): 5457-5467(in Chinese).

[16] 毕天姝,李彦宾,贾科,等.基于暂态电流波形相关性的新能源 场站送出线路纵联保护[J]. 中国电机工程学报, 2018, 38(7): 2012-2019.

BI Tianshu, LI Yanbin, JIA Ke, et al. Transient current waveform similarity based pilot protection for transmission lines connected to renewable energy power plants[J]. Proceedings of the CSEE, 2018, 38(7): 2012-2019(in Chinese).

- [17] 孔祥平,袁宇波,黄浩声,等.光伏电源故障电流的暂态特征及 其影响因素[J]. 电网技术, 2015, 39(9): 2444-2449. KONG Xiangping, YUAN Yubo, HUANG Haosheng, et al. Fault current transient features and its related impact factors of PV generator[J]. Power System Technology, 2015, 39(9): 2444-2449(in Chinese).
- [18] HUANG Linbin, XIN Huanhai, LI Zhiyi, et al. Grid-synchronization stability analysis and loop shaping for PLL-based power converters with different reactive power control[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 501-516.
- [19] 张云飞,赵晋斌,周鸣倢,等.弱电网下自适应同步旋转坐标系 锁相环鲁棒性分析及研究[J]. 中国电机工程学报, 2020, 40(7): 2234-2243. ZHANG Yunfei, ZHAO Jinbin, ZHOU Mingjie, et al. Robustness analysis and research of adaptive synchronous-reference-frame phase-locked loop under weak grid[J]. Proceedings of the CSEE, 2020, 40(7): 2234-2243(in Chinese).
- [20] 方煜. 含逆变电源的新能源电力系统故障特性分析与计算研究[D]. 北京: 华北电力大学, 2020.
- [21] 孔祥平,张哲,尹项根,等.含逆变型分布式电源的电网故障电 流特性与故障分析方法研究[J]. 中国电机工程学报, 2013, 33(34): 65-74. KONG Xiangping, ZHANG Zhe, YIN Xianggen, et al. Study on fault current characteristics and fault analysis method of power grid with inverter interfaced distributed generation[J]. Proceedings of the
- CSEE, 2013, 33(34): 65-74(in Chinese). [22] 贾科,郑黎明,毕天姝,等.基于余弦相似度的风电场站送出线 路纵联保护[J]. 中国电机工程学报, 2019, 39(21): 6263-6274. JIA Ke, ZHENG Liming, BI Tianshu, et al. Pilot protection based on cosine similarity for transmission line connected to wind farms[J]. Proceedings of the CSEE, 2019, 39(21): 6263-6274(in Chinese).
- [23] MAHMUD R, NARANG D, HOKE A. Reduced-order parameterized short-circuit current model of inverter-interfaced distributed generators[J/OL]. IEEE Transactions on Power Delivery, 2020(2020-12-23)[2021-03-23]. https://ieeexplore.ieee.org/ document/9305969.
- [24] ZHAO Mingquan, YUAN Xiaoming, HU Jiabing, et al. Voltage dynamics of current control time-scale in a VSC-connected weak grid[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2925-2937.
- [25] 国家电网公司.风电场接入电网技术规定:Q/GDW 1392-2015[S]. 北京: 国家电网公司, 2016.
- [26] 国家电网公司.光伏发电站接入电网技术规定: Q/GDW 1617-2015[S]. 北京: 国家电网公司, 2016.
- [27] 袁小明,程时杰,胡家兵.电力电子化电力系统多尺度电压功角 动态稳定问题[J]. 中国电机工程学报, 2016, 36(19): 5145-5154. YUAN Xiaoming, CHENG Shijie, HU Jiabing. Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19): 5145-5154(in Chinese).

在线出版日期: 2021-05-20。 收稿日期: 2021-03-25。 作者简介:

贾科(1986),男,教授,通信作者,研究方向 为电力系统保护与控制、新型配电网故障定位与系 统自我恢复, E-mail: ke.jia@ncepu.edu.cn;

刘浅(1998),男,硕士研究生,研究方向为新 能源电力系统故障分析及新能源短路故障电流计 算, E-mail: wmlq0428@163.com。

(责任编辑 马晓华)

附录 A

 Table A1
 Inverter equipment parameters
 类型 数值 参数 额定电压/kV 0.38 0.5 额定容量/MW 直流侧额定电压/kV 0.79 逆变器 直流侧稳压电容/μF 5000 电流环比例系数/Ω 0.15 电流环积分系数/(Ω/s) 0.04 比例系数 50 锁相环 积分系数 900 逆变器侧滤波电感/mH 0.5 寄生电阻/Ω 0.0001 网侧滤波电感/mH 0.25 滤波器 网侧滤波电阻/Ω 0.0001 网侧滤波电容/μF 100 阻尼电阻/Ω 0.8

表 A1 逆变器相关参数

表 A2 变压器、线路和等值电源参数

Table A2Parameters of the transformer, line and
equivalent ac source

类型	参数	数值
变压器	变比/(kV/kV)	0.38/10
	额定容量/MW	0.5
	等效阻抗/pu	0.06
线路	等效阻抗/Ω	0.24+j0.37
等效电源	额定电压/kV	10.5
	等效阻抗/Ω	0.02+j0.19

表 A3 现场实测中的逆变器及相关线路参数 Table A3 Parameters of the inverter and related lines in the field test

the new test			
类型	参数	数值	
逆变器	比例系数	0.06	
	积分系数	0.016	
滤波器与线路	电阻值/mΩ	2	
	电感值/mH	0.75	