杨耿杰, 韦先灿, 高伟. 基于改进动态线损估计法的超差智能电表识别[J]. 电网技术, 2022, 46(9): 3662-3671. DOI: 10.13335/j.1000-3673.pst.2021.1676
引用本文: 杨耿杰, 韦先灿, 高伟. 基于改进动态线损估计法的超差智能电表识别[J]. 电网技术, 2022, 46(9): 3662-3671. DOI: 10.13335/j.1000-3673.pst.2021.1676
YANG Gengjie, WEI Xiancan, GAO Wei. Error Estimation Method for Smart Meters Considering Sudden Misalignment[J]. Power System Technology, 2022, 46(9): 3662-3671. DOI: 10.13335/j.1000-3673.pst.2021.1676
Citation: YANG Gengjie, WEI Xiancan, GAO Wei. Error Estimation Method for Smart Meters Considering Sudden Misalignment[J]. Power System Technology, 2022, 46(9): 3662-3671. DOI: 10.13335/j.1000-3673.pst.2021.1676

基于改进动态线损估计法的超差智能电表识别

Error Estimation Method for Smart Meters Considering Sudden Misalignment

  • 摘要: 针对传统抽检电能表方法存在的精度低、工作量大、效率差等问题,提出一种电能表误差估计新方法。首先,对所收集的配电台区电表日电量数据进行筛查,标识出轻(空)负载数据。接着利用改进动态线损估计算法判断台区是否存在突变超差电表。然后,利用迭代算法缩小可疑电表数量。最后,采用聚类算法和相关性系数定位突变超差电表;设定日均误差电量超量阈值来定位缓变超差电表。通过2个不同规模的配电台区电表数据验证所提方法在缓变和突变超差电表检测上的有效性。与限定记忆最小二乘法、动态线损结合FMRLS的算法相比,所提方法误差估计精度高,误检率仅为10.6%,依靠每日一笔的电量数据就可以得到较好的误差估计结果。

     

    Abstract: In order to solve the problems of low precision, heavy workload and low efficiency in the traditional sampling method of the smart meter error monitoring, a new method for error estimation of electricity meters is proposed. First of all, the collected daily electricity data of smart meters in the distribution platform area are screened to identify the light (empty) load data. Then, the improved dynamic line loss estimation algorithm is used to judge whether there is a sudden out-of-tolerance meter in the platform area. Next, the iterative algorithm is used to reduce the amount of suspicious meters. Finally, the clustering algorithm and the correlation coefficient are used to locate the sudden out-of-tolerance meter, setting the daily average error electric quantity excess threshold to locate the slowly out-of-tolerance electric meter. The effectiveness of the proposed method in the detections of slow and sudden out-of-tolerance meters is verified by the meter data of two platform areas with different scales. Compared with the algorithm of limited memory least square method and dynamic line loss combined with the FMRLS, the proposed method has a higher error estimation accuracy with only 10.6% false detection rate. Good error estimation results can be obtained by relying on one daily electric quantity data.

     

/

返回文章
返回