戴宇欣, 张俊, 乔骥, 沈阳武, 余及舟, 许沛东, 张科, 高天露, 白昱阳. 基于改进去噪扩散概率模型和模型迁移的新能源场站超短期出力场景生成[J]. 电网技术, 2025, 49(2): 511-521. DOI: 10.13335/j.1000-3673.pst.2024.1528
引用本文: 戴宇欣, 张俊, 乔骥, 沈阳武, 余及舟, 许沛东, 张科, 高天露, 白昱阳. 基于改进去噪扩散概率模型和模型迁移的新能源场站超短期出力场景生成[J]. 电网技术, 2025, 49(2): 511-521. DOI: 10.13335/j.1000-3673.pst.2024.1528
DAI Yuxin, ZHANG Jun, QIAO Ji, SHEN Yangwu, YU Jizhou, XU Peidong, ZHANG Ke, GAO Tianlu, BAI Yuyang. Ultra-short-term Output Scenario Generation for Renewable Energy Plants Based on Improved Denoising Diffusion Probabilistic Models and Model-based Transfer Learning[J]. Power System Technology, 2025, 49(2): 511-521. DOI: 10.13335/j.1000-3673.pst.2024.1528
Citation: DAI Yuxin, ZHANG Jun, QIAO Ji, SHEN Yangwu, YU Jizhou, XU Peidong, ZHANG Ke, GAO Tianlu, BAI Yuyang. Ultra-short-term Output Scenario Generation for Renewable Energy Plants Based on Improved Denoising Diffusion Probabilistic Models and Model-based Transfer Learning[J]. Power System Technology, 2025, 49(2): 511-521. DOI: 10.13335/j.1000-3673.pst.2024.1528

基于改进去噪扩散概率模型和模型迁移的新能源场站超短期出力场景生成

Ultra-short-term Output Scenario Generation for Renewable Energy Plants Based on Improved Denoising Diffusion Probabilistic Models and Model-based Transfer Learning

  • 摘要: 新能源出力具有强不确定性,为新型电力系统的调度、控制带来了极大的挑战。为实现精准的新能源出力场景建模,首先,针对常规新能源场站超短期出力的不确定性,该文提出一种改进的去噪扩散概率模型,结合改进的自注意力机制设计适配新能源超短期出力场景生成的神经网络架构,以更好地捕捉新能源出力时序上的相关性,拟合其概率分布,从而实现新能源场站超短期出力场景的生成;然后,针对新建新能源场站历史数据不足问题,提出基于模型迁移的新建新能源场站超短期出力场景生成框架,从而在小样本条件下完成场景生成模型的构建。最后,在美国国家可再生能源实验室开源的风电、光伏出力数据集上进行了算例分析,算例结果表明所提模型在各项评价指标上较生成对抗网络、变分自编码器以及无模型迁移具有显著的性能提升。

     

    Abstract: The output of renewable energy plants exhibits strong uncertainty, posing significant challenges to the dispatching and controlling of new-type power systems. To achieve accurate modeling of renewable energy output scenarios, first, addressing the uncertainty of ultra-short-term output for renewable energy plants, this paper proposes an improved Denoising Diffusion Probabilistic Model (DDPM). This model uses an enhanced self-attention mechanism to design a neural network architecture tailored for ultra-short-term output scenario generation of renewable energy plants better to capture the correlation of renewable energy output time series and fit its probability distribution. Subsequently, addressing the issue of insufficient historical data for newly built renewable energy plants, a framework for output scenario generation of newly built renewable energy plants based on model-based transfer learning is proposed to complete the construction of the scenario generation model under the condition of small sample. Finally, case studies are conducted on the wind and solar output dataset open-sourced by the National Renewable Energy Laboratory (NREL) in the United States. Combined with the proposed evaluation metrics, the results of case studies indicate that the model proposed in this paper significantly outperforms generative adversarial networks, variational autoencoders and models without model-based transfer learning.

     

/

返回文章
返回